This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | |- A = ( N Mat R ) |
|
| mdetuni.b | |- B = ( Base ` A ) |
||
| mdetuni.k | |- K = ( Base ` R ) |
||
| mdetuni.0g | |- .0. = ( 0g ` R ) |
||
| mdetuni.1r | |- .1. = ( 1r ` R ) |
||
| mdetuni.pg | |- .+ = ( +g ` R ) |
||
| mdetuni.tg | |- .x. = ( .r ` R ) |
||
| mdetuni.n | |- ( ph -> N e. Fin ) |
||
| mdetuni.r | |- ( ph -> R e. Ring ) |
||
| mdetuni.ff | |- ( ph -> D : B --> K ) |
||
| mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
||
| mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
||
| mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
||
| Assertion | mdetunilem4 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | |- A = ( N Mat R ) |
|
| 2 | mdetuni.b | |- B = ( Base ` A ) |
|
| 3 | mdetuni.k | |- K = ( Base ` R ) |
|
| 4 | mdetuni.0g | |- .0. = ( 0g ` R ) |
|
| 5 | mdetuni.1r | |- .1. = ( 1r ` R ) |
|
| 6 | mdetuni.pg | |- .+ = ( +g ` R ) |
|
| 7 | mdetuni.tg | |- .x. = ( .r ` R ) |
|
| 8 | mdetuni.n | |- ( ph -> N e. Fin ) |
|
| 9 | mdetuni.r | |- ( ph -> R e. Ring ) |
|
| 10 | mdetuni.ff | |- ( ph -> D : B --> K ) |
|
| 11 | mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
|
| 12 | mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
|
| 13 | mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
|
| 14 | simp32 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) ) |
|
| 15 | simp33 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) |
|
| 16 | simp1 | |- ( ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> H e. N ) |
|
| 17 | simp23 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> G e. B ) |
|
| 18 | simp3 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> H e. N ) |
|
| 19 | simp21 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> E e. B ) |
|
| 20 | simp22 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> F e. K ) |
|
| 21 | 13 | 3ad2ant1 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
| 22 | reseq1 | |- ( x = E -> ( x |` ( { w } X. N ) ) = ( E |` ( { w } X. N ) ) ) |
|
| 23 | 22 | eqeq1d | |- ( x = E -> ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) ) ) |
| 24 | reseq1 | |- ( x = E -> ( x |` ( ( N \ { w } ) X. N ) ) = ( E |` ( ( N \ { w } ) X. N ) ) ) |
|
| 25 | 24 | eqeq1d | |- ( x = E -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) |
| 26 | 23 25 | anbi12d | |- ( x = E -> ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) |
| 27 | fveqeq2 | |- ( x = E -> ( ( D ` x ) = ( y .x. ( D ` z ) ) <-> ( D ` E ) = ( y .x. ( D ` z ) ) ) ) |
|
| 28 | 26 27 | imbi12d | |- ( x = E -> ( ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) ) ) |
| 29 | 28 | 2ralbidv | |- ( x = E -> ( A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) ) ) |
| 30 | sneq | |- ( y = F -> { y } = { F } ) |
|
| 31 | 30 | xpeq2d | |- ( y = F -> ( ( { w } X. N ) X. { y } ) = ( ( { w } X. N ) X. { F } ) ) |
| 32 | 31 | oveq1d | |- ( y = F -> ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) ) |
| 33 | 32 | eqeq2d | |- ( y = F -> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) ) ) |
| 34 | 33 | anbi1d | |- ( y = F -> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) |
| 35 | oveq1 | |- ( y = F -> ( y .x. ( D ` z ) ) = ( F .x. ( D ` z ) ) ) |
|
| 36 | 35 | eqeq2d | |- ( y = F -> ( ( D ` E ) = ( y .x. ( D ` z ) ) <-> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) |
| 37 | 34 36 | imbi12d | |- ( y = F -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) ) |
| 38 | 37 | 2ralbidv | |- ( y = F -> ( A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) ) |
| 39 | 29 38 | rspc2va | |- ( ( ( E e. B /\ F e. K ) /\ A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) -> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) |
| 40 | 19 20 21 39 | syl21anc | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) |
| 41 | reseq1 | |- ( z = G -> ( z |` ( { w } X. N ) ) = ( G |` ( { w } X. N ) ) ) |
|
| 42 | 41 | oveq2d | |- ( z = G -> ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) ) |
| 43 | 42 | eqeq2d | |- ( z = G -> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) ) ) |
| 44 | reseq1 | |- ( z = G -> ( z |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) |
|
| 45 | 44 | eqeq2d | |- ( z = G -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) ) |
| 46 | 43 45 | anbi12d | |- ( z = G -> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) ) ) |
| 47 | fveq2 | |- ( z = G -> ( D ` z ) = ( D ` G ) ) |
|
| 48 | 47 | oveq2d | |- ( z = G -> ( F .x. ( D ` z ) ) = ( F .x. ( D ` G ) ) ) |
| 49 | 48 | eqeq2d | |- ( z = G -> ( ( D ` E ) = ( F .x. ( D ` z ) ) <-> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) |
| 50 | 46 49 | imbi12d | |- ( z = G -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) ) |
| 51 | sneq | |- ( w = H -> { w } = { H } ) |
|
| 52 | 51 | xpeq1d | |- ( w = H -> ( { w } X. N ) = ( { H } X. N ) ) |
| 53 | 52 | reseq2d | |- ( w = H -> ( E |` ( { w } X. N ) ) = ( E |` ( { H } X. N ) ) ) |
| 54 | 52 | xpeq1d | |- ( w = H -> ( ( { w } X. N ) X. { F } ) = ( ( { H } X. N ) X. { F } ) ) |
| 55 | 52 | reseq2d | |- ( w = H -> ( G |` ( { w } X. N ) ) = ( G |` ( { H } X. N ) ) ) |
| 56 | 54 55 | oveq12d | |- ( w = H -> ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) ) |
| 57 | 53 56 | eqeq12d | |- ( w = H -> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) <-> ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) ) ) |
| 58 | 51 | difeq2d | |- ( w = H -> ( N \ { w } ) = ( N \ { H } ) ) |
| 59 | 58 | xpeq1d | |- ( w = H -> ( ( N \ { w } ) X. N ) = ( ( N \ { H } ) X. N ) ) |
| 60 | 59 | reseq2d | |- ( w = H -> ( E |` ( ( N \ { w } ) X. N ) ) = ( E |` ( ( N \ { H } ) X. N ) ) ) |
| 61 | 59 | reseq2d | |- ( w = H -> ( G |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) |
| 62 | 60 61 | eqeq12d | |- ( w = H -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) |
| 63 | 57 62 | anbi12d | |- ( w = H -> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) ) |
| 64 | 63 | imbi1d | |- ( w = H -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) <-> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) ) |
| 65 | 50 64 | rspc2va | |- ( ( ( G e. B /\ H e. N ) /\ A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) |
| 66 | 17 18 40 65 | syl21anc | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) |
| 67 | 16 66 | syl3an3 | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) |
| 68 | 14 15 67 | mp2and | |- ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) |