This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegxrcl.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| mdegxrcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mdegxrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | mdegxrcl | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegxrcl.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| 2 | mdegxrcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mdegxrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | eqid | ⊢ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } = { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } | |
| 6 | eqid | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) | |
| 7 | 1 2 3 4 5 6 | mdegval | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
| 8 | imassrn | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ran ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) | |
| 9 | 5 6 | tdeglem1 | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) : { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ⟶ ℕ0 |
| 10 | frn | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) : { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ⟶ ℕ0 → ran ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) ⊆ ℕ0 ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝐹 ∈ 𝐵 → ran ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) ⊆ ℕ0 ) |
| 12 | nn0ssre | ⊢ ℕ0 ⊆ ℝ | |
| 13 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 14 | 12 13 | sstri | ⊢ ℕ0 ⊆ ℝ* |
| 15 | 11 14 | sstrdi | ⊢ ( 𝐹 ∈ 𝐵 → ran ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) ⊆ ℝ* ) |
| 16 | 8 15 | sstrid | ⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℝ* ) |
| 17 | supxrcl | ⊢ ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℝ* → sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 18 | 16 17 | syl | ⊢ ( 𝐹 ∈ 𝐵 → sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 19 | 7 18 | eqeltrd | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |