This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The matrix ring has the same additive inverse as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas.a | |- A = ( N Mat R ) |
|
| matbas.g | |- G = ( R freeLMod ( N X. N ) ) |
||
| Assertion | matinvg | |- ( ( N e. Fin /\ R e. V ) -> ( invg ` G ) = ( invg ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas.a | |- A = ( N Mat R ) |
|
| 2 | matbas.g | |- G = ( R freeLMod ( N X. N ) ) |
|
| 3 | eqidd | |- ( ( N e. Fin /\ R e. V ) -> ( Base ` G ) = ( Base ` G ) ) |
|
| 4 | 1 2 | matbas | |- ( ( N e. Fin /\ R e. V ) -> ( Base ` G ) = ( Base ` A ) ) |
| 5 | 1 2 | matplusg | |- ( ( N e. Fin /\ R e. V ) -> ( +g ` G ) = ( +g ` A ) ) |
| 6 | 5 | oveqdr | |- ( ( ( N e. Fin /\ R e. V ) /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` A ) y ) ) |
| 7 | 3 4 6 | grpinvpropd | |- ( ( N e. Fin /\ R e. V ) -> ( invg ` G ) = ( invg ` A ) ) |