This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1dim.a | |- A = ( { E } Mat R ) |
|
| mat1dim.b | |- B = ( Base ` R ) |
||
| mat1dim.o | |- O = <. E , E >. |
||
| Assertion | mat1dimbas | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> { <. O , X >. } e. ( Base ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.a | |- A = ( { E } Mat R ) |
|
| 2 | mat1dim.b | |- B = ( Base ` R ) |
|
| 3 | mat1dim.o | |- O = <. E , E >. |
|
| 4 | risset | |- ( X e. B <-> E. r e. B r = X ) |
|
| 5 | eqcom | |- ( X = r <-> r = X ) |
|
| 6 | 5 | rexbii | |- ( E. r e. B X = r <-> E. r e. B r = X ) |
| 7 | 4 6 | sylbb2 | |- ( X e. B -> E. r e. B X = r ) |
| 8 | 7 | 3ad2ant3 | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> E. r e. B X = r ) |
| 9 | opex | |- <. E , E >. e. _V |
|
| 10 | 3 9 | eqeltri | |- O e. _V |
| 11 | simp3 | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> X e. B ) |
|
| 12 | opthg | |- ( ( O e. _V /\ X e. B ) -> ( <. O , X >. = <. O , r >. <-> ( O = O /\ X = r ) ) ) |
|
| 13 | 10 11 12 | sylancr | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> ( <. O , X >. = <. O , r >. <-> ( O = O /\ X = r ) ) ) |
| 14 | opex | |- <. O , X >. e. _V |
|
| 15 | sneqbg | |- ( <. O , X >. e. _V -> ( { <. O , X >. } = { <. O , r >. } <-> <. O , X >. = <. O , r >. ) ) |
|
| 16 | 14 15 | ax-mp | |- ( { <. O , X >. } = { <. O , r >. } <-> <. O , X >. = <. O , r >. ) |
| 17 | eqid | |- O = O |
|
| 18 | 17 | biantrur | |- ( X = r <-> ( O = O /\ X = r ) ) |
| 19 | 13 16 18 | 3bitr4g | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> ( { <. O , X >. } = { <. O , r >. } <-> X = r ) ) |
| 20 | 19 | rexbidv | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> ( E. r e. B { <. O , X >. } = { <. O , r >. } <-> E. r e. B X = r ) ) |
| 21 | 8 20 | mpbird | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> E. r e. B { <. O , X >. } = { <. O , r >. } ) |
| 22 | 1 2 3 | mat1dimelbas | |- ( ( R e. Ring /\ E e. V ) -> ( { <. O , X >. } e. ( Base ` A ) <-> E. r e. B { <. O , X >. } = { <. O , r >. } ) ) |
| 23 | 22 | 3adant3 | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> ( { <. O , X >. } e. ( Base ` A ) <-> E. r e. B { <. O , X >. } = { <. O , r >. } ) ) |
| 24 | 21 23 | mpbird | |- ( ( R e. Ring /\ E e. V /\ X e. B ) -> { <. O , X >. } e. ( Base ` A ) ) |