This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functional value of the matrix multiplication operator. (Contributed by Stefan O'Rear, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamufval.f | |- F = ( R maMul <. M , N , P >. ) |
|
| mamufval.b | |- B = ( Base ` R ) |
||
| mamufval.t | |- .x. = ( .r ` R ) |
||
| mamufval.r | |- ( ph -> R e. V ) |
||
| mamufval.m | |- ( ph -> M e. Fin ) |
||
| mamufval.n | |- ( ph -> N e. Fin ) |
||
| mamufval.p | |- ( ph -> P e. Fin ) |
||
| Assertion | mamufval | |- ( ph -> F = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamufval.f | |- F = ( R maMul <. M , N , P >. ) |
|
| 2 | mamufval.b | |- B = ( Base ` R ) |
|
| 3 | mamufval.t | |- .x. = ( .r ` R ) |
|
| 4 | mamufval.r | |- ( ph -> R e. V ) |
|
| 5 | mamufval.m | |- ( ph -> M e. Fin ) |
|
| 6 | mamufval.n | |- ( ph -> N e. Fin ) |
|
| 7 | mamufval.p | |- ( ph -> P e. Fin ) |
|
| 8 | df-mamu | |- maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
|
| 9 | 8 | a1i | |- ( ph -> maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) ) |
| 10 | fvex | |- ( 1st ` ( 1st ` o ) ) e. _V |
|
| 11 | fvex | |- ( 2nd ` ( 1st ` o ) ) e. _V |
|
| 12 | fvex | |- ( 2nd ` o ) e. _V |
|
| 13 | eqidd | |- ( p = ( 2nd ` o ) -> ( ( Base ` r ) ^m ( m X. n ) ) = ( ( Base ` r ) ^m ( m X. n ) ) ) |
|
| 14 | xpeq2 | |- ( p = ( 2nd ` o ) -> ( n X. p ) = ( n X. ( 2nd ` o ) ) ) |
|
| 15 | 14 | oveq2d | |- ( p = ( 2nd ` o ) -> ( ( Base ` r ) ^m ( n X. p ) ) = ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) ) |
| 16 | eqidd | |- ( p = ( 2nd ` o ) -> m = m ) |
|
| 17 | id | |- ( p = ( 2nd ` o ) -> p = ( 2nd ` o ) ) |
|
| 18 | eqidd | |- ( p = ( 2nd ` o ) -> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) = ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
|
| 19 | 16 17 18 | mpoeq123dv | |- ( p = ( 2nd ` o ) -> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) = ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 20 | 13 15 19 | mpoeq123dv | |- ( p = ( 2nd ` o ) -> ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) |-> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 21 | 12 20 | csbie | |- [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) |-> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 22 | xpeq12 | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( m X. n ) = ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) |
|
| 23 | 22 | oveq2d | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( ( Base ` r ) ^m ( m X. n ) ) = ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) ) |
| 24 | simpr | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> n = ( 2nd ` ( 1st ` o ) ) ) |
|
| 25 | 24 | xpeq1d | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( n X. ( 2nd ` o ) ) = ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |
| 26 | 25 | oveq2d | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) = ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) ) |
| 27 | id | |- ( m = ( 1st ` ( 1st ` o ) ) -> m = ( 1st ` ( 1st ` o ) ) ) |
|
| 28 | 27 | adantr | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> m = ( 1st ` ( 1st ` o ) ) ) |
| 29 | eqidd | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( 2nd ` o ) = ( 2nd ` o ) ) |
|
| 30 | eqidd | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( ( i x j ) ( .r ` r ) ( j y k ) ) = ( ( i x j ) ( .r ` r ) ( j y k ) ) ) |
|
| 31 | 24 30 | mpteq12dv | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) = ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) |
| 32 | 31 | oveq2d | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) = ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
| 33 | 28 29 32 | mpoeq123dv | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) = ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 34 | 23 26 33 | mpoeq123dv | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) |-> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 35 | 21 34 | eqtrid | |- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 36 | 10 11 35 | csbie2 | |- [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 37 | simprl | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> r = R ) |
|
| 38 | 37 | fveq2d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 39 | 38 2 | eqtr4di | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( Base ` r ) = B ) |
| 40 | fveq2 | |- ( o = <. M , N , P >. -> ( 1st ` o ) = ( 1st ` <. M , N , P >. ) ) |
|
| 41 | 40 | fveq2d | |- ( o = <. M , N , P >. -> ( 1st ` ( 1st ` o ) ) = ( 1st ` ( 1st ` <. M , N , P >. ) ) ) |
| 42 | 41 | ad2antll | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 1st ` ( 1st ` o ) ) = ( 1st ` ( 1st ` <. M , N , P >. ) ) ) |
| 43 | ot1stg | |- ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( 1st ` ( 1st ` <. M , N , P >. ) ) = M ) |
|
| 44 | 5 6 7 43 | syl3anc | |- ( ph -> ( 1st ` ( 1st ` <. M , N , P >. ) ) = M ) |
| 45 | 44 | adantr | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 1st ` ( 1st ` <. M , N , P >. ) ) = M ) |
| 46 | 42 45 | eqtrd | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 1st ` ( 1st ` o ) ) = M ) |
| 47 | 40 | fveq2d | |- ( o = <. M , N , P >. -> ( 2nd ` ( 1st ` o ) ) = ( 2nd ` ( 1st ` <. M , N , P >. ) ) ) |
| 48 | 47 | ad2antll | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` ( 1st ` o ) ) = ( 2nd ` ( 1st ` <. M , N , P >. ) ) ) |
| 49 | ot2ndg | |- ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( 2nd ` ( 1st ` <. M , N , P >. ) ) = N ) |
|
| 50 | 5 6 7 49 | syl3anc | |- ( ph -> ( 2nd ` ( 1st ` <. M , N , P >. ) ) = N ) |
| 51 | 50 | adantr | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` ( 1st ` <. M , N , P >. ) ) = N ) |
| 52 | 48 51 | eqtrd | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` ( 1st ` o ) ) = N ) |
| 53 | 46 52 | xpeq12d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) = ( M X. N ) ) |
| 54 | 39 53 | oveq12d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) = ( B ^m ( M X. N ) ) ) |
| 55 | fveq2 | |- ( o = <. M , N , P >. -> ( 2nd ` o ) = ( 2nd ` <. M , N , P >. ) ) |
|
| 56 | 55 | ad2antll | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` o ) = ( 2nd ` <. M , N , P >. ) ) |
| 57 | ot3rdg | |- ( P e. Fin -> ( 2nd ` <. M , N , P >. ) = P ) |
|
| 58 | 7 57 | syl | |- ( ph -> ( 2nd ` <. M , N , P >. ) = P ) |
| 59 | 58 | adantr | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` <. M , N , P >. ) = P ) |
| 60 | 56 59 | eqtrd | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` o ) = P ) |
| 61 | 52 60 | xpeq12d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) = ( N X. P ) ) |
| 62 | 39 61 | oveq12d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) = ( B ^m ( N X. P ) ) ) |
| 63 | 37 | fveq2d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( .r ` r ) = ( .r ` R ) ) |
| 64 | 63 3 | eqtr4di | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( .r ` r ) = .x. ) |
| 65 | 64 | oveqd | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( i x j ) ( .r ` r ) ( j y k ) ) = ( ( i x j ) .x. ( j y k ) ) ) |
| 66 | 52 65 | mpteq12dv | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) = ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) |
| 67 | 37 66 | oveq12d | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) = ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) |
| 68 | 46 60 67 | mpoeq123dv | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) = ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) |
| 69 | 54 62 68 | mpoeq123dv | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| 70 | 36 69 | eqtrid | |- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| 71 | 4 | elexd | |- ( ph -> R e. _V ) |
| 72 | otex | |- <. M , N , P >. e. _V |
|
| 73 | 72 | a1i | |- ( ph -> <. M , N , P >. e. _V ) |
| 74 | ovex | |- ( B ^m ( M X. N ) ) e. _V |
|
| 75 | ovex | |- ( B ^m ( N X. P ) ) e. _V |
|
| 76 | 74 75 | mpoex | |- ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) e. _V |
| 77 | 76 | a1i | |- ( ph -> ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) e. _V ) |
| 78 | 9 70 71 73 77 | ovmpod | |- ( ph -> ( R maMul <. M , N , P >. ) = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| 79 | 1 78 | eqtrid | |- ( ph -> F = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |