This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator which multiplies an m x n matrix with an n x p matrix, see also the definition in Lang p. 504. Note that it is not generally possible to recover the dimensions from the matrix, since all n x 0 and all 0 x n matrices are represented by the empty set. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mamu | |- maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmmul | |- maMul |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vo | |- o |
|
| 4 | c1st | |- 1st |
|
| 5 | 3 | cv | |- o |
| 6 | 5 4 | cfv | |- ( 1st ` o ) |
| 7 | 6 4 | cfv | |- ( 1st ` ( 1st ` o ) ) |
| 8 | vm | |- m |
|
| 9 | c2nd | |- 2nd |
|
| 10 | 6 9 | cfv | |- ( 2nd ` ( 1st ` o ) ) |
| 11 | vn | |- n |
|
| 12 | 5 9 | cfv | |- ( 2nd ` o ) |
| 13 | vp | |- p |
|
| 14 | vx | |- x |
|
| 15 | cbs | |- Base |
|
| 16 | 1 | cv | |- r |
| 17 | 16 15 | cfv | |- ( Base ` r ) |
| 18 | cmap | |- ^m |
|
| 19 | 8 | cv | |- m |
| 20 | 11 | cv | |- n |
| 21 | 19 20 | cxp | |- ( m X. n ) |
| 22 | 17 21 18 | co | |- ( ( Base ` r ) ^m ( m X. n ) ) |
| 23 | vy | |- y |
|
| 24 | 13 | cv | |- p |
| 25 | 20 24 | cxp | |- ( n X. p ) |
| 26 | 17 25 18 | co | |- ( ( Base ` r ) ^m ( n X. p ) ) |
| 27 | vi | |- i |
|
| 28 | vk | |- k |
|
| 29 | cgsu | |- gsum |
|
| 30 | vj | |- j |
|
| 31 | 27 | cv | |- i |
| 32 | 14 | cv | |- x |
| 33 | 30 | cv | |- j |
| 34 | 31 33 32 | co | |- ( i x j ) |
| 35 | cmulr | |- .r |
|
| 36 | 16 35 | cfv | |- ( .r ` r ) |
| 37 | 23 | cv | |- y |
| 38 | 28 | cv | |- k |
| 39 | 33 38 37 | co | |- ( j y k ) |
| 40 | 34 39 36 | co | |- ( ( i x j ) ( .r ` r ) ( j y k ) ) |
| 41 | 30 20 40 | cmpt | |- ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) |
| 42 | 16 41 29 | co | |- ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) |
| 43 | 27 28 19 24 42 | cmpo | |- ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
| 44 | 14 23 22 26 43 | cmpo | |- ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 45 | 13 12 44 | csb | |- [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 46 | 11 10 45 | csb | |- [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 47 | 8 7 46 | csb | |- [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 48 | 1 3 2 2 47 | cmpo | |- ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 49 | 0 48 | wceq | |- maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |