This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmss2b | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T <-> ( T .(+) U ) = T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | 1 | lsmss2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ U C_ T ) -> ( T .(+) U ) = T ) |
| 3 | 2 | 3expia | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T -> ( T .(+) U ) = T ) ) |
| 4 | 1 | lsmub2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( T .(+) U ) ) |
| 5 | sseq2 | |- ( ( T .(+) U ) = T -> ( U C_ ( T .(+) U ) <-> U C_ T ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T .(+) U ) = T -> U C_ T ) ) |
| 7 | 3 6 | impbid | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U C_ T <-> ( T .(+) U ) = T ) ) |