This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmless1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ S C_ T ) -> ( S .(+) U ) C_ ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ S C_ T ) -> G e. Grp ) |
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 4 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ S C_ T ) -> T C_ ( Base ` G ) ) |
| 7 | 4 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 8 | 7 | 3ad2ant2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ S C_ T ) -> U C_ ( Base ` G ) ) |
| 9 | simp3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ S C_ T ) -> S C_ T ) |
|
| 10 | 4 1 | lsmless1x | |- ( ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) /\ S C_ T ) -> ( S .(+) U ) C_ ( T .(+) U ) ) |
| 11 | 3 6 8 9 10 | syl31anc | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ S C_ T ) -> ( S .(+) U ) C_ ( T .(+) U ) ) |