This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpgecl | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR ) |
|
| 2 | 0red | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 0 e. RR ) |
|
| 3 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A e. RR ) |
| 5 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 0 < A ) |
| 7 | simp3 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A <_ B ) |
|
| 8 | 2 4 1 6 7 | ltletrd | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 0 < B ) |
| 9 | elrp | |- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
|
| 10 | 1 8 9 | sylanbrc | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) |