This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lo1bdd | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ m ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> F e. <_O(1) ) |
|
| 2 | simpr | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> F : A --> RR ) |
|
| 3 | fdm | |- ( F : A --> RR -> dom F = A ) |
|
| 4 | 3 | adantl | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> dom F = A ) |
| 5 | lo1dm | |- ( F e. <_O(1) -> dom F C_ RR ) |
|
| 6 | 5 | adantr | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> dom F C_ RR ) |
| 7 | 4 6 | eqsstrrd | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> A C_ RR ) |
| 8 | ello12 | |- ( ( F : A --> RR /\ A C_ RR ) -> ( F e. <_O(1) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ m ) ) ) |
|
| 9 | 2 7 8 | syl2anc | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> ( F e. <_O(1) <-> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ m ) ) ) |
| 10 | 1 9 | mpbid | |- ( ( F e. <_O(1) /\ F : A --> RR ) -> E. x e. RR E. m e. RR A. y e. A ( x <_ y -> ( F ` y ) <_ m ) ) |