This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the topology K is finer than J , then there are more continuous functions from K than from J . (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnss1.1 | |- X = U. J |
|
| Assertion | cnss1 | |- ( ( K e. ( TopOn ` X ) /\ J C_ K ) -> ( J Cn L ) C_ ( K Cn L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnss1.1 | |- X = U. J |
|
| 2 | eqid | |- U. L = U. L |
|
| 3 | 1 2 | cnf | |- ( f e. ( J Cn L ) -> f : X --> U. L ) |
| 4 | 3 | adantl | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> f : X --> U. L ) |
| 5 | simpllr | |- ( ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) /\ x e. L ) -> J C_ K ) |
|
| 6 | cnima | |- ( ( f e. ( J Cn L ) /\ x e. L ) -> ( `' f " x ) e. J ) |
|
| 7 | 6 | adantll | |- ( ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) /\ x e. L ) -> ( `' f " x ) e. J ) |
| 8 | 5 7 | sseldd | |- ( ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) /\ x e. L ) -> ( `' f " x ) e. K ) |
| 9 | 8 | ralrimiva | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> A. x e. L ( `' f " x ) e. K ) |
| 10 | simpll | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> K e. ( TopOn ` X ) ) |
|
| 11 | cntop2 | |- ( f e. ( J Cn L ) -> L e. Top ) |
|
| 12 | 11 | adantl | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> L e. Top ) |
| 13 | toptopon2 | |- ( L e. Top <-> L e. ( TopOn ` U. L ) ) |
|
| 14 | 12 13 | sylib | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> L e. ( TopOn ` U. L ) ) |
| 15 | iscn | |- ( ( K e. ( TopOn ` X ) /\ L e. ( TopOn ` U. L ) ) -> ( f e. ( K Cn L ) <-> ( f : X --> U. L /\ A. x e. L ( `' f " x ) e. K ) ) ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> ( f e. ( K Cn L ) <-> ( f : X --> U. L /\ A. x e. L ( `' f " x ) e. K ) ) ) |
| 17 | 4 9 16 | mpbir2and | |- ( ( ( K e. ( TopOn ` X ) /\ J C_ K ) /\ f e. ( J Cn L ) ) -> f e. ( K Cn L ) ) |
| 18 | 17 | ex | |- ( ( K e. ( TopOn ` X ) /\ J C_ K ) -> ( f e. ( J Cn L ) -> f e. ( K Cn L ) ) ) |
| 19 | 18 | ssrdv | |- ( ( K e. ( TopOn ` X ) /\ J C_ K ) -> ( J Cn L ) C_ ( K Cn L ) ) |