This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a pair of ordered pairs is a subset of an ordered pair, their first components are equal. (Contributed by AV, 20-Sep-2020) (Proof shortened by AV, 16-Jun-2022) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snopeqop.a | |- A e. _V |
|
| snopeqop.b | |- B e. _V |
||
| propeqop.c | |- C e. _V |
||
| propeqop.d | |- D e. _V |
||
| propeqop.e | |- E e. _V |
||
| propeqop.f | |- F e. _V |
||
| Assertion | propssopi | |- ( { <. A , B >. , <. C , D >. } C_ <. E , F >. -> A = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snopeqop.a | |- A e. _V |
|
| 2 | snopeqop.b | |- B e. _V |
|
| 3 | propeqop.c | |- C e. _V |
|
| 4 | propeqop.d | |- D e. _V |
|
| 5 | propeqop.e | |- E e. _V |
|
| 6 | propeqop.f | |- F e. _V |
|
| 7 | 5 6 | dfop | |- <. E , F >. = { { E } , { E , F } } |
| 8 | 7 | sseq2i | |- ( { <. A , B >. , <. C , D >. } C_ <. E , F >. <-> { <. A , B >. , <. C , D >. } C_ { { E } , { E , F } } ) |
| 9 | sspr | |- ( { <. A , B >. , <. C , D >. } C_ { { E } , { E , F } } <-> ( ( { <. A , B >. , <. C , D >. } = (/) \/ { <. A , B >. , <. C , D >. } = { { E } } ) \/ ( { <. A , B >. , <. C , D >. } = { { E , F } } \/ { <. A , B >. , <. C , D >. } = { { E } , { E , F } } ) ) ) |
|
| 10 | opex | |- <. A , B >. e. _V |
|
| 11 | 10 | prnz | |- { <. A , B >. , <. C , D >. } =/= (/) |
| 12 | eqneqall | |- ( { <. A , B >. , <. C , D >. } = (/) -> ( { <. A , B >. , <. C , D >. } =/= (/) -> A = C ) ) |
|
| 13 | 11 12 | mpi | |- ( { <. A , B >. , <. C , D >. } = (/) -> A = C ) |
| 14 | opex | |- <. C , D >. e. _V |
|
| 15 | 10 14 | preqsn | |- ( { <. A , B >. , <. C , D >. } = { { E } } <-> ( <. A , B >. = <. C , D >. /\ <. C , D >. = { E } ) ) |
| 16 | 1 2 | opth | |- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |
| 17 | simpl | |- ( ( A = C /\ B = D ) -> A = C ) |
|
| 18 | 16 17 | sylbi | |- ( <. A , B >. = <. C , D >. -> A = C ) |
| 19 | 18 | adantr | |- ( ( <. A , B >. = <. C , D >. /\ <. C , D >. = { E } ) -> A = C ) |
| 20 | 15 19 | sylbi | |- ( { <. A , B >. , <. C , D >. } = { { E } } -> A = C ) |
| 21 | 13 20 | jaoi | |- ( ( { <. A , B >. , <. C , D >. } = (/) \/ { <. A , B >. , <. C , D >. } = { { E } } ) -> A = C ) |
| 22 | 10 14 | preqsn | |- ( { <. A , B >. , <. C , D >. } = { { E , F } } <-> ( <. A , B >. = <. C , D >. /\ <. C , D >. = { E , F } ) ) |
| 23 | 17 | a1d | |- ( ( A = C /\ B = D ) -> ( <. C , D >. = { E , F } -> A = C ) ) |
| 24 | 16 23 | sylbi | |- ( <. A , B >. = <. C , D >. -> ( <. C , D >. = { E , F } -> A = C ) ) |
| 25 | 24 | imp | |- ( ( <. A , B >. = <. C , D >. /\ <. C , D >. = { E , F } ) -> A = C ) |
| 26 | 22 25 | sylbi | |- ( { <. A , B >. , <. C , D >. } = { { E , F } } -> A = C ) |
| 27 | 7 | eqcomi | |- { { E } , { E , F } } = <. E , F >. |
| 28 | 27 | eqeq2i | |- ( { <. A , B >. , <. C , D >. } = { { E } , { E , F } } <-> { <. A , B >. , <. C , D >. } = <. E , F >. ) |
| 29 | 1 2 3 4 5 6 | propeqop | |- ( { <. A , B >. , <. C , D >. } = <. E , F >. <-> ( ( A = C /\ E = { A } ) /\ ( ( A = B /\ F = { A , D } ) \/ ( A = D /\ F = { A , B } ) ) ) ) |
| 30 | 28 29 | bitri | |- ( { <. A , B >. , <. C , D >. } = { { E } , { E , F } } <-> ( ( A = C /\ E = { A } ) /\ ( ( A = B /\ F = { A , D } ) \/ ( A = D /\ F = { A , B } ) ) ) ) |
| 31 | simpll | |- ( ( ( A = C /\ E = { A } ) /\ ( ( A = B /\ F = { A , D } ) \/ ( A = D /\ F = { A , B } ) ) ) -> A = C ) |
|
| 32 | 30 31 | sylbi | |- ( { <. A , B >. , <. C , D >. } = { { E } , { E , F } } -> A = C ) |
| 33 | 26 32 | jaoi | |- ( ( { <. A , B >. , <. C , D >. } = { { E , F } } \/ { <. A , B >. , <. C , D >. } = { { E } , { E , F } } ) -> A = C ) |
| 34 | 21 33 | jaoi | |- ( ( ( { <. A , B >. , <. C , D >. } = (/) \/ { <. A , B >. , <. C , D >. } = { { E } } ) \/ ( { <. A , B >. , <. C , D >. } = { { E , F } } \/ { <. A , B >. , <. C , D >. } = { { E } , { E , F } } ) ) -> A = C ) |
| 35 | 9 34 | sylbi | |- ( { <. A , B >. , <. C , D >. } C_ { { E } , { E , F } } -> A = C ) |
| 36 | 8 35 | sylbi | |- ( { <. A , B >. , <. C , D >. } C_ <. E , F >. -> A = C ) |