This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for itcovalpc : induction basis. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcovalpc.f | |- F = ( n e. NN0 |-> ( n + C ) ) |
|
| Assertion | itcovalpclem1 | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalpc.f | |- F = ( n e. NN0 |-> ( n + C ) ) |
|
| 2 | nn0ex | |- NN0 e. _V |
|
| 3 | ovexd | |- ( n e. NN0 -> ( n + C ) e. _V ) |
|
| 4 | 3 | rgen | |- A. n e. NN0 ( n + C ) e. _V |
| 5 | 1 | itcoval0mpt | |- ( ( NN0 e. _V /\ A. n e. NN0 ( n + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) |
| 6 | 2 4 5 | mp2an | |- ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) |
| 7 | nn0cn | |- ( C e. NN0 -> C e. CC ) |
|
| 8 | 7 | mul01d | |- ( C e. NN0 -> ( C x. 0 ) = 0 ) |
| 9 | 8 | adantr | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( C x. 0 ) = 0 ) |
| 10 | 9 | oveq2d | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + ( C x. 0 ) ) = ( n + 0 ) ) |
| 11 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 12 | 11 | addridd | |- ( n e. NN0 -> ( n + 0 ) = n ) |
| 13 | 12 | adantl | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + 0 ) = n ) |
| 14 | 10 13 | eqtr2d | |- ( ( C e. NN0 /\ n e. NN0 ) -> n = ( n + ( C x. 0 ) ) ) |
| 15 | 14 | mpteq2dva | |- ( C e. NN0 -> ( n e. NN0 |-> n ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |
| 16 | 6 15 | eqtrid | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |