This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all posets (partially ordered sets) with weak ordering (e.g., "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ps | |- PosetRel = { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cps | |- PosetRel |
|
| 1 | vr | |- r |
|
| 2 | 1 | cv | |- r |
| 3 | 2 | wrel | |- Rel r |
| 4 | 2 2 | ccom | |- ( r o. r ) |
| 5 | 4 2 | wss | |- ( r o. r ) C_ r |
| 6 | 2 | ccnv | |- `' r |
| 7 | 2 6 | cin | |- ( r i^i `' r ) |
| 8 | cid | |- _I |
|
| 9 | 2 | cuni | |- U. r |
| 10 | 9 | cuni | |- U. U. r |
| 11 | 8 10 | cres | |- ( _I |` U. U. r ) |
| 12 | 7 11 | wceq | |- ( r i^i `' r ) = ( _I |` U. U. r ) |
| 13 | 3 5 12 | w3a | |- ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) |
| 14 | 13 1 | cab | |- { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) } |
| 15 | 0 14 | wceq | |- PosetRel = { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) } |