This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of orthomodular lattices. Definition from Kalmbach p. 16. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-oml | |- OML = { l e. OL | A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | coml | |- OML |
|
| 1 | vl | |- l |
|
| 2 | col | |- OL |
|
| 3 | va | |- a |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- l |
| 6 | 5 4 | cfv | |- ( Base ` l ) |
| 7 | vb | |- b |
|
| 8 | 3 | cv | |- a |
| 9 | cple | |- le |
|
| 10 | 5 9 | cfv | |- ( le ` l ) |
| 11 | 7 | cv | |- b |
| 12 | 8 11 10 | wbr | |- a ( le ` l ) b |
| 13 | cjn | |- join |
|
| 14 | 5 13 | cfv | |- ( join ` l ) |
| 15 | cmee | |- meet |
|
| 16 | 5 15 | cfv | |- ( meet ` l ) |
| 17 | coc | |- oc |
|
| 18 | 5 17 | cfv | |- ( oc ` l ) |
| 19 | 8 18 | cfv | |- ( ( oc ` l ) ` a ) |
| 20 | 11 19 16 | co | |- ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) |
| 21 | 8 20 14 | co | |- ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) |
| 22 | 11 21 | wceq | |- b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) |
| 23 | 12 22 | wi | |- ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) |
| 24 | 23 7 6 | wral | |- A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) |
| 25 | 24 3 6 | wral | |- A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) |
| 26 | 25 1 2 | crab | |- { l e. OL | A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) } |
| 27 | 0 26 | wceq | |- OML = { l e. OL | A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) } |