This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinitoi.b | |- B = ( Base ` C ) |
|
| isinitoi.h | |- H = ( Hom ` C ) |
||
| isinitoi.c | |- ( ph -> C e. Cat ) |
||
| Assertion | isinitoi | |- ( ( ph /\ O e. ( InitO ` C ) ) -> ( O e. B /\ A. b e. B E! h h e. ( O H b ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinitoi.b | |- B = ( Base ` C ) |
|
| 2 | isinitoi.h | |- H = ( Hom ` C ) |
|
| 3 | isinitoi.c | |- ( ph -> C e. Cat ) |
|
| 4 | 3 1 2 | initoval | |- ( ph -> ( InitO ` C ) = { a e. B | A. b e. B E! h h e. ( a H b ) } ) |
| 5 | 4 | eleq2d | |- ( ph -> ( O e. ( InitO ` C ) <-> O e. { a e. B | A. b e. B E! h h e. ( a H b ) } ) ) |
| 6 | elrabi | |- ( O e. { a e. B | A. b e. B E! h h e. ( a H b ) } -> O e. B ) |
|
| 7 | 5 6 | biimtrdi | |- ( ph -> ( O e. ( InitO ` C ) -> O e. B ) ) |
| 8 | 7 | imp | |- ( ( ph /\ O e. ( InitO ` C ) ) -> O e. B ) |
| 9 | 3 | adantr | |- ( ( ph /\ O e. B ) -> C e. Cat ) |
| 10 | simpr | |- ( ( ph /\ O e. B ) -> O e. B ) |
|
| 11 | 1 2 9 10 | isinito | |- ( ( ph /\ O e. B ) -> ( O e. ( InitO ` C ) <-> A. b e. B E! h h e. ( O H b ) ) ) |
| 12 | 11 | biimpd | |- ( ( ph /\ O e. B ) -> ( O e. ( InitO ` C ) -> A. b e. B E! h h e. ( O H b ) ) ) |
| 13 | 12 | impancom | |- ( ( ph /\ O e. ( InitO ` C ) ) -> ( O e. B -> A. b e. B E! h h e. ( O H b ) ) ) |
| 14 | 8 13 | jcai | |- ( ( ph /\ O e. ( InitO ` C ) ) -> ( O e. B /\ A. b e. B E! h h e. ( O H b ) ) ) |