This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adomain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-domn | |- Domn = { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdomn | |- Domn |
|
| 1 | vr | |- r |
|
| 2 | cnzr | |- NzRing |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- r |
| 5 | 4 3 | cfv | |- ( Base ` r ) |
| 6 | vb | |- b |
|
| 7 | c0g | |- 0g |
|
| 8 | 4 7 | cfv | |- ( 0g ` r ) |
| 9 | vz | |- z |
|
| 10 | vx | |- x |
|
| 11 | 6 | cv | |- b |
| 12 | vy | |- y |
|
| 13 | 10 | cv | |- x |
| 14 | cmulr | |- .r |
|
| 15 | 4 14 | cfv | |- ( .r ` r ) |
| 16 | 12 | cv | |- y |
| 17 | 13 16 15 | co | |- ( x ( .r ` r ) y ) |
| 18 | 9 | cv | |- z |
| 19 | 17 18 | wceq | |- ( x ( .r ` r ) y ) = z |
| 20 | 13 18 | wceq | |- x = z |
| 21 | 16 18 | wceq | |- y = z |
| 22 | 20 21 | wo | |- ( x = z \/ y = z ) |
| 23 | 19 22 | wi | |- ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 24 | 23 12 11 | wral | |- A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 25 | 24 10 11 | wral | |- A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 26 | 25 9 8 | wsbc | |- [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 27 | 26 6 5 | wsbc | |- [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 28 | 27 1 2 | crab | |- { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |
| 29 | 0 28 | wceq | |- Domn = { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |