This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 11-Apr-2021) (Revised by AV, 28-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwlke.v | |- V = ( Vtx ` G ) |
|
| isclwlke.i | |- I = ( iEdg ` G ) |
||
| Assertion | isclwlkupgr | |- ( G e. UPGraph -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlke.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwlke.i | |- I = ( iEdg ` G ) |
|
| 3 | isclwlk | |- ( F ( ClWalks ` G ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 4 | 1 2 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 5 | 4 | anbi1d | |- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| 6 | 3an4anass | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
|
| 7 | 5 6 | bitrdi | |- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 8 | 3 7 | bitrid | |- ( G e. UPGraph -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |