This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoval.i | |- I = ( toInc ` F ) |
|
| ipole.l | |- .<_ = ( le ` I ) |
||
| Assertion | ipotset | |- ( F e. V -> ( ordTop ` .<_ ) = ( TopSet ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoval.i | |- I = ( toInc ` F ) |
|
| 2 | ipole.l | |- .<_ = ( le ` I ) |
|
| 3 | fvex | |- ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) e. _V |
|
| 4 | ipostr | |- ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) Struct <. 1 , ; 1 1 >. |
|
| 5 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 6 | snsspr2 | |- { <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } C_ { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } |
|
| 7 | ssun1 | |- { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } C_ ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) |
|
| 8 | 6 7 | sstri | |- { <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } C_ ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) |
| 9 | 4 5 8 | strfv | |- ( ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) e. _V -> ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) = ( TopSet ` ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) ) |
| 10 | 3 9 | ax-mp | |- ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) = ( TopSet ` ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| 11 | 1 | ipolerval | |- ( F e. V -> { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } = ( le ` I ) ) |
| 12 | 2 11 | eqtr4id | |- ( F e. V -> .<_ = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) |
| 13 | 12 | fveq2d | |- ( F e. V -> ( ordTop ` .<_ ) = ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) ) |
| 14 | eqid | |- { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } |
|
| 15 | 1 14 | ipoval | |- ( F e. V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| 16 | 15 | fveq2d | |- ( F e. V -> ( TopSet ` I ) = ( TopSet ` ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) >. } u. { <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) ) |
| 17 | 10 13 16 | 3eqtr4a | |- ( F e. V -> ( ordTop ` .<_ ) = ( TopSet ` I ) ) |