This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoval.i | |- I = ( toInc ` F ) |
|
| ipoval.l | |- .<_ = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } |
||
| Assertion | ipoval | |- ( F e. V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoval.i | |- I = ( toInc ` F ) |
|
| 2 | ipoval.l | |- .<_ = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } |
|
| 3 | elex | |- ( F e. V -> F e. _V ) |
|
| 4 | vex | |- f e. _V |
|
| 5 | 4 4 | xpex | |- ( f X. f ) e. _V |
| 6 | simpl | |- ( ( { x , y } C_ f /\ x C_ y ) -> { x , y } C_ f ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | prss | |- ( ( x e. f /\ y e. f ) <-> { x , y } C_ f ) |
| 10 | 6 9 | sylibr | |- ( ( { x , y } C_ f /\ x C_ y ) -> ( x e. f /\ y e. f ) ) |
| 11 | 10 | ssopab2i | |- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } C_ { <. x , y >. | ( x e. f /\ y e. f ) } |
| 12 | df-xp | |- ( f X. f ) = { <. x , y >. | ( x e. f /\ y e. f ) } |
|
| 13 | 11 12 | sseqtrri | |- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } C_ ( f X. f ) |
| 14 | 5 13 | ssexi | |- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } e. _V |
| 15 | 14 | a1i | |- ( f = F -> { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } e. _V ) |
| 16 | sseq2 | |- ( f = F -> ( { x , y } C_ f <-> { x , y } C_ F ) ) |
|
| 17 | 16 | anbi1d | |- ( f = F -> ( ( { x , y } C_ f /\ x C_ y ) <-> ( { x , y } C_ F /\ x C_ y ) ) ) |
| 18 | 17 | opabbidv | |- ( f = F -> { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) |
| 19 | 18 2 | eqtr4di | |- ( f = F -> { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } = .<_ ) |
| 20 | simpl | |- ( ( f = F /\ o = .<_ ) -> f = F ) |
|
| 21 | 20 | opeq2d | |- ( ( f = F /\ o = .<_ ) -> <. ( Base ` ndx ) , f >. = <. ( Base ` ndx ) , F >. ) |
| 22 | simpr | |- ( ( f = F /\ o = .<_ ) -> o = .<_ ) |
|
| 23 | 22 | fveq2d | |- ( ( f = F /\ o = .<_ ) -> ( ordTop ` o ) = ( ordTop ` .<_ ) ) |
| 24 | 23 | opeq2d | |- ( ( f = F /\ o = .<_ ) -> <. ( TopSet ` ndx ) , ( ordTop ` o ) >. = <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. ) |
| 25 | 21 24 | preq12d | |- ( ( f = F /\ o = .<_ ) -> { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } = { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } ) |
| 26 | 22 | opeq2d | |- ( ( f = F /\ o = .<_ ) -> <. ( le ` ndx ) , o >. = <. ( le ` ndx ) , .<_ >. ) |
| 27 | id | |- ( f = F -> f = F ) |
|
| 28 | rabeq | |- ( f = F -> { y e. f | ( y i^i x ) = (/) } = { y e. F | ( y i^i x ) = (/) } ) |
|
| 29 | 28 | unieqd | |- ( f = F -> U. { y e. f | ( y i^i x ) = (/) } = U. { y e. F | ( y i^i x ) = (/) } ) |
| 30 | 27 29 | mpteq12dv | |- ( f = F -> ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) = ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) ) |
| 31 | 30 | adantr | |- ( ( f = F /\ o = .<_ ) -> ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) = ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) ) |
| 32 | 31 | opeq2d | |- ( ( f = F /\ o = .<_ ) -> <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. = <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. ) |
| 33 | 26 32 | preq12d | |- ( ( f = F /\ o = .<_ ) -> { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } = { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) |
| 34 | 25 33 | uneq12d | |- ( ( f = F /\ o = .<_ ) -> ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| 35 | 15 19 34 | csbied2 | |- ( f = F -> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| 36 | df-ipo | |- toInc = ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) |
|
| 37 | prex | |- { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } e. _V |
|
| 38 | prex | |- { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } e. _V |
|
| 39 | 37 38 | unex | |- ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) e. _V |
| 40 | 35 36 39 | fvmpt | |- ( F e. _V -> ( toInc ` F ) = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| 41 | 1 40 | eqtrid | |- ( F e. _V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |
| 42 | 3 41 | syl | |- ( F e. V -> I = ( { <. ( Base ` ndx ) , F >. , <. ( TopSet ` ndx ) , ( ordTop ` .<_ ) >. } u. { <. ( le ` ndx ) , .<_ >. , <. ( oc ` ndx ) , ( x e. F |-> U. { y e. F | ( y i^i x ) = (/) } ) >. } ) ) |