This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of an image structure. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasbas.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasbas.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasbas.f | |- ( ph -> F : V -onto-> B ) |
||
| imasbas.r | |- ( ph -> R e. Z ) |
||
| imasip.i | |- ., = ( .i ` R ) |
||
| imasip.w | |- I = ( .i ` U ) |
||
| Assertion | imasip | |- ( ph -> I = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasbas.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasbas.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imasbas.r | |- ( ph -> R e. Z ) |
|
| 5 | imasip.i | |- ., = ( .i ` R ) |
|
| 6 | imasip.w | |- I = ( .i ` U ) |
|
| 7 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 10 | eqid | |- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
|
| 11 | eqid | |- ( .s ` R ) = ( .s ` R ) |
|
| 12 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 13 | eqid | |- ( dist ` R ) = ( dist ` R ) |
|
| 14 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 15 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 16 | 1 2 3 4 7 15 | imasplusg | |- ( ph -> ( +g ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } ) |
| 17 | eqid | |- ( .r ` U ) = ( .r ` U ) |
|
| 18 | 1 2 3 4 8 17 | imasmulr | |- ( ph -> ( .r ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } ) |
| 19 | eqid | |- ( .s ` U ) = ( .s ` U ) |
|
| 20 | 1 2 3 4 9 10 11 19 | imasvsca | |- ( ph -> ( .s ` U ) = U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) ) |
| 21 | eqidd | |- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
|
| 22 | eqidd | |- ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( TopOpen ` R ) qTop F ) ) |
|
| 23 | eqid | |- ( dist ` U ) = ( dist ` U ) |
|
| 24 | 1 2 3 4 13 23 | imasds | |- ( ph -> ( dist ` U ) = ( x e. B , y e. B |-> inf ( U_ u e. NN ran ( z e. { w e. ( ( V X. V ) ^m ( 1 ... u ) ) | ( ( F ` ( 1st ` ( w ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( w ` u ) ) ) = y /\ A. v e. ( 1 ... ( u - 1 ) ) ( F ` ( 2nd ` ( w ` v ) ) ) = ( F ` ( 1st ` ( w ` ( v + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` R ) o. z ) ) ) , RR* , < ) ) ) |
| 25 | eqidd | |- ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) = ( ( F o. ( le ` R ) ) o. `' F ) ) |
|
| 26 | 1 2 7 8 9 10 11 5 12 13 14 16 18 20 21 22 24 25 3 4 | imasval | |- ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) ) |
| 27 | eqid | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) |
|
| 28 | 27 | imasvalstr | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) Struct <. 1 , ; 1 2 >. |
| 29 | ipid | |- .i = Slot ( .i ` ndx ) |
|
| 30 | snsstp3 | |- { <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } C_ { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } |
|
| 31 | ssun2 | |- { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) |
|
| 32 | 30 31 | sstri | |- { <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) |
| 33 | ssun1 | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) |
|
| 34 | 32 33 | sstri | |- { <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( .s ` U ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) |
| 35 | fvex | |- ( Base ` R ) e. _V |
|
| 36 | 2 35 | eqeltrdi | |- ( ph -> V e. _V ) |
| 37 | snex | |- { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V |
|
| 38 | 37 | rgenw | |- A. q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V |
| 39 | iunexg | |- ( ( V e. _V /\ A. q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) -> U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) |
|
| 40 | 36 38 39 | sylancl | |- ( ph -> U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) |
| 41 | 40 | ralrimivw | |- ( ph -> A. p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) |
| 42 | iunexg | |- ( ( V e. _V /\ A. p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) |
|
| 43 | 36 41 42 | syl2anc | |- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } e. _V ) |
| 44 | 26 28 29 34 43 6 | strfv3 | |- ( ph -> I = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |