This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iin0 | |- ( A =/= (/) <-> |^|_ x e. A (/) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinconst | |- ( A =/= (/) -> |^|_ x e. A (/) = (/) ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 2 | n0ii | |- -. _V = (/) |
| 4 | 0iin | |- |^|_ x e. (/) (/) = _V |
|
| 5 | 4 | eqeq1i | |- ( |^|_ x e. (/) (/) = (/) <-> _V = (/) ) |
| 6 | 3 5 | mtbir | |- -. |^|_ x e. (/) (/) = (/) |
| 7 | iineq1 | |- ( A = (/) -> |^|_ x e. A (/) = |^|_ x e. (/) (/) ) |
|
| 8 | 7 | eqeq1d | |- ( A = (/) -> ( |^|_ x e. A (/) = (/) <-> |^|_ x e. (/) (/) = (/) ) ) |
| 9 | 6 8 | mtbiri | |- ( A = (/) -> -. |^|_ x e. A (/) = (/) ) |
| 10 | 9 | necon2ai | |- ( |^|_ x e. A (/) = (/) -> A =/= (/) ) |
| 11 | 1 10 | impbii | |- ( A =/= (/) <-> |^|_ x e. A (/) = (/) ) |