This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifor | |- if ( ( ph \/ ps ) , A , B ) = if ( ph , A , if ( ps , A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | |- ( ( ph \/ ps ) -> if ( ( ph \/ ps ) , A , B ) = A ) |
|
| 2 | 1 | orcs | |- ( ph -> if ( ( ph \/ ps ) , A , B ) = A ) |
| 3 | iftrue | |- ( ph -> if ( ph , A , if ( ps , A , B ) ) = A ) |
|
| 4 | 2 3 | eqtr4d | |- ( ph -> if ( ( ph \/ ps ) , A , B ) = if ( ph , A , if ( ps , A , B ) ) ) |
| 5 | iffalse | |- ( -. ph -> if ( ph , A , if ( ps , A , B ) ) = if ( ps , A , B ) ) |
|
| 6 | biorf | |- ( -. ph -> ( ps <-> ( ph \/ ps ) ) ) |
|
| 7 | 6 | ifbid | |- ( -. ph -> if ( ps , A , B ) = if ( ( ph \/ ps ) , A , B ) ) |
| 8 | 5 7 | eqtr2d | |- ( -. ph -> if ( ( ph \/ ps ) , A , B ) = if ( ph , A , if ( ps , A , B ) ) ) |
| 9 | 4 8 | pm2.61i | |- if ( ( ph \/ ps ) , A , B ) = if ( ph , A , if ( ps , A , B ) ) |