This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfmpt.1 | |- B e. _V |
|
| Assertion | fnasrn | |- ( x e. A |-> B ) = ran ( x e. A |-> <. x , B >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpt.1 | |- B e. _V |
|
| 2 | 1 | dfmpt | |- ( x e. A |-> B ) = U_ x e. A { <. x , B >. } |
| 3 | eqid | |- ( x e. A |-> <. x , B >. ) = ( x e. A |-> <. x , B >. ) |
|
| 4 | 3 | rnmpt | |- ran ( x e. A |-> <. x , B >. ) = { y | E. x e. A y = <. x , B >. } |
| 5 | velsn | |- ( y e. { <. x , B >. } <-> y = <. x , B >. ) |
|
| 6 | 5 | rexbii | |- ( E. x e. A y e. { <. x , B >. } <-> E. x e. A y = <. x , B >. ) |
| 7 | 6 | abbii | |- { y | E. x e. A y e. { <. x , B >. } } = { y | E. x e. A y = <. x , B >. } |
| 8 | 4 7 | eqtr4i | |- ran ( x e. A |-> <. x , B >. ) = { y | E. x e. A y e. { <. x , B >. } } |
| 9 | df-iun | |- U_ x e. A { <. x , B >. } = { y | E. x e. A y e. { <. x , B >. } } |
|
| 10 | 8 9 | eqtr4i | |- ran ( x e. A |-> <. x , B >. ) = U_ x e. A { <. x , B >. } |
| 11 | 2 10 | eqtr4i | |- ( x e. A |-> B ) = ran ( x e. A |-> <. x , B >. ) |