This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgadd.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| itgadd.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
||
| itgadd.3 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| itgadd.4 | |- ( ph -> ( x e. A |-> C ) e. L^1 ) |
||
| Assertion | iblsub | |- ( ph -> ( x e. A |-> ( B - C ) ) e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgadd.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | itgadd.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 3 | itgadd.3 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 4 | itgadd.4 | |- ( ph -> ( x e. A |-> C ) e. L^1 ) |
|
| 5 | iblmbf | |- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
|
| 6 | 2 5 | syl | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 7 | 6 1 | mbfmptcl | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 8 | iblmbf | |- ( ( x e. A |-> C ) e. L^1 -> ( x e. A |-> C ) e. MblFn ) |
|
| 9 | 4 8 | syl | |- ( ph -> ( x e. A |-> C ) e. MblFn ) |
| 10 | 9 3 | mbfmptcl | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 11 | 7 10 | negsubd | |- ( ( ph /\ x e. A ) -> ( B + -u C ) = ( B - C ) ) |
| 12 | 11 | mpteq2dva | |- ( ph -> ( x e. A |-> ( B + -u C ) ) = ( x e. A |-> ( B - C ) ) ) |
| 13 | 10 | negcld | |- ( ( ph /\ x e. A ) -> -u C e. CC ) |
| 14 | 3 4 | iblneg | |- ( ph -> ( x e. A |-> -u C ) e. L^1 ) |
| 15 | 7 2 13 14 | ibladd | |- ( ph -> ( x e. A |-> ( B + -u C ) ) e. L^1 ) |
| 16 | 12 15 | eqeltrrd | |- ( ph -> ( x e. A |-> ( B - C ) ) e. L^1 ) |