This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
| h2h.2 | |- U e. NrmCVec |
||
| h2h.4 | |- ~H = ( BaseSet ` U ) |
||
| Assertion | h2hvs | |- -h = ( -v ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | h2h.2 | |- U e. NrmCVec |
|
| 3 | h2h.4 | |- ~H = ( BaseSet ` U ) |
|
| 4 | df-hvsub | |- -h = ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) ) |
|
| 5 | 1 2 | h2hva | |- +h = ( +v ` U ) |
| 6 | 1 2 | h2hsm | |- .h = ( .sOLD ` U ) |
| 7 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 8 | 3 5 6 7 | nvmfval | |- ( U e. NrmCVec -> ( -v ` U ) = ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) ) ) |
| 9 | 2 8 | ax-mp | |- ( -v ` U ) = ( x e. ~H , y e. ~H |-> ( x +h ( -u 1 .h y ) ) ) |
| 10 | 4 9 | eqtr4i | |- -h = ( -v ` U ) |