This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
| h2h.2 | |- U e. NrmCVec |
||
| Assertion | h2hsm | |- .h = ( .sOLD ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | h2h.2 | |- U e. NrmCVec |
|
| 3 | eqid | |- ( .sOLD ` <. <. +h , .h >. , normh >. ) = ( .sOLD ` <. <. +h , .h >. , normh >. ) |
|
| 4 | 3 | smfval | |- ( .sOLD ` <. <. +h , .h >. , normh >. ) = ( 2nd ` ( 1st ` <. <. +h , .h >. , normh >. ) ) |
| 5 | opex | |- <. +h , .h >. e. _V |
|
| 6 | 1 2 | eqeltrri | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 7 | nvex | |- ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( +h e. _V /\ .h e. _V /\ normh e. _V ) ) |
|
| 8 | 6 7 | ax-mp | |- ( +h e. _V /\ .h e. _V /\ normh e. _V ) |
| 9 | 8 | simp3i | |- normh e. _V |
| 10 | 5 9 | op1st | |- ( 1st ` <. <. +h , .h >. , normh >. ) = <. +h , .h >. |
| 11 | 10 | fveq2i | |- ( 2nd ` ( 1st ` <. <. +h , .h >. , normh >. ) ) = ( 2nd ` <. +h , .h >. ) |
| 12 | 8 | simp1i | |- +h e. _V |
| 13 | 8 | simp2i | |- .h e. _V |
| 14 | 12 13 | op2nd | |- ( 2nd ` <. +h , .h >. ) = .h |
| 15 | 4 11 14 | 3eqtrri | |- .h = ( .sOLD ` <. <. +h , .h >. , normh >. ) |
| 16 | 1 | fveq2i | |- ( .sOLD ` U ) = ( .sOLD ` <. <. +h , .h >. , normh >. ) |
| 17 | 15 16 | eqtr4i | |- .h = ( .sOLD ` U ) |