This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
| h2h.2 | |- U e. NrmCVec |
||
| Assertion | h2hnm | |- normh = ( normCV ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | h2h.2 | |- U e. NrmCVec |
|
| 3 | 1 | fveq2i | |- ( normCV ` U ) = ( normCV ` <. <. +h , .h >. , normh >. ) |
| 4 | eqid | |- ( normCV ` <. <. +h , .h >. , normh >. ) = ( normCV ` <. <. +h , .h >. , normh >. ) |
|
| 5 | 4 | nmcvfval | |- ( normCV ` <. <. +h , .h >. , normh >. ) = ( 2nd ` <. <. +h , .h >. , normh >. ) |
| 6 | opex | |- <. +h , .h >. e. _V |
|
| 7 | 1 2 | eqeltrri | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 8 | nvex | |- ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( +h e. _V /\ .h e. _V /\ normh e. _V ) ) |
|
| 9 | 7 8 | ax-mp | |- ( +h e. _V /\ .h e. _V /\ normh e. _V ) |
| 10 | 9 | simp3i | |- normh e. _V |
| 11 | 6 10 | op2nd | |- ( 2nd ` <. <. +h , .h >. , normh >. ) = normh |
| 12 | 3 5 11 | 3eqtrri | |- normh = ( normCV ` U ) |