This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpinvfvi.t | |- N = ( invg ` G ) |
|
| Assertion | grpinvfvi | |- N = ( invg ` ( _I ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfvi.t | |- N = ( invg ` G ) |
|
| 2 | fvi | |- ( G e. _V -> ( _I ` G ) = G ) |
|
| 3 | 2 | fveq2d | |- ( G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` G ) ) |
| 4 | base0 | |- (/) = ( Base ` (/) ) |
|
| 5 | eqid | |- ( invg ` (/) ) = ( invg ` (/) ) |
|
| 6 | 4 5 | grpinvfn | |- ( invg ` (/) ) Fn (/) |
| 7 | fn0 | |- ( ( invg ` (/) ) Fn (/) <-> ( invg ` (/) ) = (/) ) |
|
| 8 | 6 7 | mpbi | |- ( invg ` (/) ) = (/) |
| 9 | fvprc | |- ( -. G e. _V -> ( _I ` G ) = (/) ) |
|
| 10 | 9 | fveq2d | |- ( -. G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` (/) ) ) |
| 11 | fvprc | |- ( -. G e. _V -> ( invg ` G ) = (/) ) |
|
| 12 | 8 10 11 | 3eqtr4a | |- ( -. G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` G ) ) |
| 13 | 3 12 | pm2.61i | |- ( invg ` ( _I ` G ) ) = ( invg ` G ) |
| 14 | 1 13 | eqtr4i | |- N = ( invg ` ( _I ` G ) ) |