This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpinvfvi.t | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| Assertion | grpinvfvi | ⊢ 𝑁 = ( invg ‘ ( I ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfvi.t | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 2 | fvi | ⊢ ( 𝐺 ∈ V → ( I ‘ 𝐺 ) = 𝐺 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝐺 ∈ V → ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ 𝐺 ) ) |
| 4 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 5 | eqid | ⊢ ( invg ‘ ∅ ) = ( invg ‘ ∅ ) | |
| 6 | 4 5 | grpinvfn | ⊢ ( invg ‘ ∅ ) Fn ∅ |
| 7 | fn0 | ⊢ ( ( invg ‘ ∅ ) Fn ∅ ↔ ( invg ‘ ∅ ) = ∅ ) | |
| 8 | 6 7 | mpbi | ⊢ ( invg ‘ ∅ ) = ∅ |
| 9 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( I ‘ 𝐺 ) = ∅ ) | |
| 10 | 9 | fveq2d | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ ∅ ) ) |
| 11 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ∅ ) | |
| 12 | 8 10 11 | 3eqtr4a | ⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ 𝐺 ) ) |
| 13 | 3 12 | pm2.61i | ⊢ ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ 𝐺 ) |
| 14 | 1 13 | eqtr4i | ⊢ 𝑁 = ( invg ‘ ( I ‘ 𝐺 ) ) |