This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a commutative monoid G under a group homomorphism F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmabl.x | |- X = ( Base ` G ) |
|
| ghmabl.y | |- Y = ( Base ` H ) |
||
| ghmabl.p | |- .+ = ( +g ` G ) |
||
| ghmabl.q | |- .+^ = ( +g ` H ) |
||
| ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
| ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
||
| ghmcmn.3 | |- ( ph -> G e. CMnd ) |
||
| Assertion | ghmcmn | |- ( ph -> H e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.x | |- X = ( Base ` G ) |
|
| 2 | ghmabl.y | |- Y = ( Base ` H ) |
|
| 3 | ghmabl.p | |- .+ = ( +g ` G ) |
|
| 4 | ghmabl.q | |- .+^ = ( +g ` H ) |
|
| 5 | ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 6 | ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
|
| 7 | ghmcmn.3 | |- ( ph -> G e. CMnd ) |
|
| 8 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 9 | 7 8 | syl | |- ( ph -> G e. Mnd ) |
| 10 | 5 1 2 3 4 6 9 | mhmmnd | |- ( ph -> H e. Mnd ) |
| 11 | simp-6l | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ph ) |
|
| 12 | 11 7 | syl | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> G e. CMnd ) |
| 13 | simp-4r | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> a e. X ) |
|
| 14 | simplr | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> b e. X ) |
|
| 15 | 1 3 | cmncom | |- ( ( G e. CMnd /\ a e. X /\ b e. X ) -> ( a .+ b ) = ( b .+ a ) ) |
| 16 | 12 13 14 15 | syl3anc | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( a .+ b ) = ( b .+ a ) ) |
| 17 | 16 | fveq2d | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( F ` ( a .+ b ) ) = ( F ` ( b .+ a ) ) ) |
| 18 | 11 5 | syl3an1 | |- ( ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 19 | 18 13 14 | mhmlem | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) |
| 20 | 18 14 13 | mhmlem | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( F ` ( b .+ a ) ) = ( ( F ` b ) .+^ ( F ` a ) ) ) |
| 21 | 17 19 20 | 3eqtr3d | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( ( F ` a ) .+^ ( F ` b ) ) = ( ( F ` b ) .+^ ( F ` a ) ) ) |
| 22 | simpllr | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( F ` a ) = i ) |
|
| 23 | simpr | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( F ` b ) = j ) |
|
| 24 | 22 23 | oveq12d | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( ( F ` a ) .+^ ( F ` b ) ) = ( i .+^ j ) ) |
| 25 | 23 22 | oveq12d | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( ( F ` b ) .+^ ( F ` a ) ) = ( j .+^ i ) ) |
| 26 | 21 24 25 | 3eqtr3d | |- ( ( ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) /\ b e. X ) /\ ( F ` b ) = j ) -> ( i .+^ j ) = ( j .+^ i ) ) |
| 27 | foelcdmi | |- ( ( F : X -onto-> Y /\ j e. Y ) -> E. b e. X ( F ` b ) = j ) |
|
| 28 | 6 27 | sylan | |- ( ( ph /\ j e. Y ) -> E. b e. X ( F ` b ) = j ) |
| 29 | 28 | ad5ant13 | |- ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) -> E. b e. X ( F ` b ) = j ) |
| 30 | 26 29 | r19.29a | |- ( ( ( ( ( ph /\ i e. Y ) /\ j e. Y ) /\ a e. X ) /\ ( F ` a ) = i ) -> ( i .+^ j ) = ( j .+^ i ) ) |
| 31 | foelcdmi | |- ( ( F : X -onto-> Y /\ i e. Y ) -> E. a e. X ( F ` a ) = i ) |
|
| 32 | 6 31 | sylan | |- ( ( ph /\ i e. Y ) -> E. a e. X ( F ` a ) = i ) |
| 33 | 32 | adantr | |- ( ( ( ph /\ i e. Y ) /\ j e. Y ) -> E. a e. X ( F ` a ) = i ) |
| 34 | 30 33 | r19.29a | |- ( ( ( ph /\ i e. Y ) /\ j e. Y ) -> ( i .+^ j ) = ( j .+^ i ) ) |
| 35 | 34 | anasss | |- ( ( ph /\ ( i e. Y /\ j e. Y ) ) -> ( i .+^ j ) = ( j .+^ i ) ) |
| 36 | 35 | ralrimivva | |- ( ph -> A. i e. Y A. j e. Y ( i .+^ j ) = ( j .+^ i ) ) |
| 37 | 2 4 | iscmn | |- ( H e. CMnd <-> ( H e. Mnd /\ A. i e. Y A. j e. Y ( i .+^ j ) = ( j .+^ i ) ) ) |
| 38 | 10 36 37 | sylanbrc | |- ( ph -> H e. CMnd ) |