This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right argument of a group action is a set. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gaset | |- ( .(+) e. ( G GrpAct Y ) -> Y e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 3 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 4 | 1 2 3 | isga | |- ( .(+) e. ( G GrpAct Y ) <-> ( ( G e. Grp /\ Y e. _V ) /\ ( .(+) : ( ( Base ` G ) X. Y ) --> Y /\ A. x e. Y ( ( ( 0g ` G ) .(+) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| 5 | 4 | simplbi | |- ( .(+) e. ( G GrpAct Y ) -> ( G e. Grp /\ Y e. _V ) ) |
| 6 | 5 | simprd | |- ( .(+) e. ( G GrpAct Y ) -> Y e. _V ) |