This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group operation is a left group action of the group on itself. (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gaid2.1 | |- X = ( Base ` G ) |
|
| gaid2.2 | |- .+ = ( +g ` G ) |
||
| gaid2.3 | |- F = ( x e. X , y e. X |-> ( x .+ y ) ) |
||
| Assertion | gaid2 | |- ( G e. Grp -> F e. ( G GrpAct X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaid2.1 | |- X = ( Base ` G ) |
|
| 2 | gaid2.2 | |- .+ = ( +g ` G ) |
|
| 3 | gaid2.3 | |- F = ( x e. X , y e. X |-> ( x .+ y ) ) |
|
| 4 | 1 | subgid | |- ( G e. Grp -> X e. ( SubGrp ` G ) ) |
| 5 | eqid | |- ( G |`s X ) = ( G |`s X ) |
|
| 6 | 1 2 5 3 | subgga | |- ( X e. ( SubGrp ` G ) -> F e. ( ( G |`s X ) GrpAct X ) ) |
| 7 | 4 6 | syl | |- ( G e. Grp -> F e. ( ( G |`s X ) GrpAct X ) ) |
| 8 | 1 | ressid | |- ( G e. Grp -> ( G |`s X ) = G ) |
| 9 | 8 | oveq1d | |- ( G e. Grp -> ( ( G |`s X ) GrpAct X ) = ( G GrpAct X ) ) |
| 10 | 7 9 | eleqtrd | |- ( G e. Grp -> F e. ( G GrpAct X ) ) |