This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzrev3 | |- ( K e. ZZ -> ( K e. ( M ... N ) <-> ( ( M + N ) - K ) e. ( M ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( K e. ZZ /\ K e. ( M ... N ) ) -> K e. ZZ ) |
|
| 2 | elfzel1 | |- ( K e. ( M ... N ) -> M e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( K e. ZZ /\ K e. ( M ... N ) ) -> M e. ZZ ) |
| 4 | elfzel2 | |- ( K e. ( M ... N ) -> N e. ZZ ) |
|
| 5 | 4 | adantl | |- ( ( K e. ZZ /\ K e. ( M ... N ) ) -> N e. ZZ ) |
| 6 | 1 3 5 | 3jca | |- ( ( K e. ZZ /\ K e. ( M ... N ) ) -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
| 7 | simpl | |- ( ( K e. ZZ /\ ( ( M + N ) - K ) e. ( M ... N ) ) -> K e. ZZ ) |
|
| 8 | elfzel1 | |- ( ( ( M + N ) - K ) e. ( M ... N ) -> M e. ZZ ) |
|
| 9 | 8 | adantl | |- ( ( K e. ZZ /\ ( ( M + N ) - K ) e. ( M ... N ) ) -> M e. ZZ ) |
| 10 | elfzel2 | |- ( ( ( M + N ) - K ) e. ( M ... N ) -> N e. ZZ ) |
|
| 11 | 10 | adantl | |- ( ( K e. ZZ /\ ( ( M + N ) - K ) e. ( M ... N ) ) -> N e. ZZ ) |
| 12 | 7 9 11 | 3jca | |- ( ( K e. ZZ /\ ( ( M + N ) - K ) e. ( M ... N ) ) -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
| 13 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 14 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 15 | pncan | |- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - N ) = M ) |
|
| 16 | pncan2 | |- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - M ) = N ) |
|
| 17 | 15 16 | oveq12d | |- ( ( M e. CC /\ N e. CC ) -> ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) = ( M ... N ) ) |
| 18 | 13 14 17 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) = ( M ... N ) ) |
| 19 | 18 | eleq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( K e. ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) <-> K e. ( M ... N ) ) ) |
| 20 | 19 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) <-> K e. ( M ... N ) ) ) |
| 21 | 3simpc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 22 | zaddcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
|
| 23 | 22 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
| 24 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 25 | fzrev | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( M + N ) e. ZZ /\ K e. ZZ ) ) -> ( K e. ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) <-> ( ( M + N ) - K ) e. ( M ... N ) ) ) |
|
| 26 | 21 23 24 25 | syl12anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( ( ( M + N ) - N ) ... ( ( M + N ) - M ) ) <-> ( ( M + N ) - K ) e. ( M ... N ) ) ) |
| 27 | 20 26 | bitr3d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ... N ) <-> ( ( M + N ) - K ) e. ( M ... N ) ) ) |
| 28 | 6 12 27 | pm5.21nd | |- ( K e. ZZ -> ( K e. ( M ... N ) <-> ( ( M + N ) - K ) e. ( M ... N ) ) ) |