This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a half-open interval, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzone1 | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzofz | |- ( K e. ( M ..^ N ) -> K e. ( M ... N ) ) |
|
| 2 | 1 | adantr | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( M ... N ) ) |
| 3 | elfzlmr | |- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
|
| 4 | 2 3 | syl | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
| 5 | df-3or | |- ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) <-> ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) \/ K = N ) ) |
|
| 6 | 4 5 | sylib | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) \/ K = N ) ) |
| 7 | 2 | elfzelzd | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ZZ ) |
| 8 | 7 | zred | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. RR ) |
| 9 | elfzolt2 | |- ( K e. ( M ..^ N ) -> K < N ) |
|
| 10 | 9 | adantr | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K < N ) |
| 11 | 8 10 | ltned | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K =/= N ) |
| 12 | 11 | neneqd | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> -. K = N ) |
| 13 | 6 12 | olcnd | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) ) |
| 14 | simpr | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K =/= M ) |
|
| 15 | 14 | neneqd | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> -. K = M ) |
| 16 | 13 15 | orcnd | |- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ..^ N ) ) |