This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0addel | |- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( C + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoaddel | |- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( ( 0 + D ) ..^ ( C + D ) ) ) |
|
| 2 | zcn | |- ( D e. ZZ -> D e. CC ) |
|
| 3 | addlid | |- ( D e. CC -> ( 0 + D ) = D ) |
|
| 4 | 3 | eqcomd | |- ( D e. CC -> D = ( 0 + D ) ) |
| 5 | 2 4 | syl | |- ( D e. ZZ -> D = ( 0 + D ) ) |
| 6 | 5 | adantl | |- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> D = ( 0 + D ) ) |
| 7 | 6 | oveq1d | |- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D ..^ ( C + D ) ) = ( ( 0 + D ) ..^ ( C + D ) ) ) |
| 8 | 1 7 | eleqtrrd | |- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( C + D ) ) ) |