This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fveqres | |- ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres | |- ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) ) |
|
| 2 | fvres | |- ( A e. B -> ( ( G |` B ) ` A ) = ( G ` A ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A e. B -> ( ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) <-> ( F ` A ) = ( G ` A ) ) ) |
| 4 | 3 | biimprd | |- ( A e. B -> ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) ) |
| 5 | nfvres | |- ( -. A e. B -> ( ( F |` B ) ` A ) = (/) ) |
|
| 6 | nfvres | |- ( -. A e. B -> ( ( G |` B ) ` A ) = (/) ) |
|
| 7 | 5 6 | eqtr4d | |- ( -. A e. B -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) |
| 8 | 7 | a1d | |- ( -. A e. B -> ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) ) |
| 9 | 4 8 | pm2.61i | |- ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) |