This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of fvmpt with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptd2f.1 | |- ( ph -> A e. D ) |
|
| fvmptd2f.2 | |- ( ( ph /\ x = A ) -> B e. V ) |
||
| fvmptd2f.3 | |- ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) ) |
||
| fvmptd3f.4 | |- F/_ x F |
||
| fvmptd3f.5 | |- F/ x ps |
||
| fvmptd3f.6 | |- F/ x ph |
||
| Assertion | fvmptd3f | |- ( ph -> ( F = ( x e. D |-> B ) -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd2f.1 | |- ( ph -> A e. D ) |
|
| 2 | fvmptd2f.2 | |- ( ( ph /\ x = A ) -> B e. V ) |
|
| 3 | fvmptd2f.3 | |- ( ( ph /\ x = A ) -> ( ( F ` A ) = B -> ps ) ) |
|
| 4 | fvmptd3f.4 | |- F/_ x F |
|
| 5 | fvmptd3f.5 | |- F/ x ps |
|
| 6 | fvmptd3f.6 | |- F/ x ph |
|
| 7 | nfmpt1 | |- F/_ x ( x e. D |-> B ) |
|
| 8 | 4 7 | nfeq | |- F/ x F = ( x e. D |-> B ) |
| 9 | 8 5 | nfim | |- F/ x ( F = ( x e. D |-> B ) -> ps ) |
| 10 | 1 | elexd | |- ( ph -> A e. _V ) |
| 11 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 12 | 10 11 | sylib | |- ( ph -> E. x x = A ) |
| 13 | fveq1 | |- ( F = ( x e. D |-> B ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) |
|
| 14 | simpr | |- ( ( ph /\ x = A ) -> x = A ) |
|
| 15 | 14 | fveq2d | |- ( ( ph /\ x = A ) -> ( ( x e. D |-> B ) ` x ) = ( ( x e. D |-> B ) ` A ) ) |
| 16 | 1 | adantr | |- ( ( ph /\ x = A ) -> A e. D ) |
| 17 | 14 16 | eqeltrd | |- ( ( ph /\ x = A ) -> x e. D ) |
| 18 | eqid | |- ( x e. D |-> B ) = ( x e. D |-> B ) |
|
| 19 | 18 | fvmpt2 | |- ( ( x e. D /\ B e. V ) -> ( ( x e. D |-> B ) ` x ) = B ) |
| 20 | 17 2 19 | syl2anc | |- ( ( ph /\ x = A ) -> ( ( x e. D |-> B ) ` x ) = B ) |
| 21 | 15 20 | eqtr3d | |- ( ( ph /\ x = A ) -> ( ( x e. D |-> B ) ` A ) = B ) |
| 22 | 21 | eqeq2d | |- ( ( ph /\ x = A ) -> ( ( F ` A ) = ( ( x e. D |-> B ) ` A ) <-> ( F ` A ) = B ) ) |
| 23 | 22 3 | sylbid | |- ( ( ph /\ x = A ) -> ( ( F ` A ) = ( ( x e. D |-> B ) ` A ) -> ps ) ) |
| 24 | 13 23 | syl5 | |- ( ( ph /\ x = A ) -> ( F = ( x e. D |-> B ) -> ps ) ) |
| 25 | 6 9 12 24 | exlimdd | |- ( ph -> ( F = ( x e. D |-> B ) -> ps ) ) |