This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funsndifnop.a | |- A e. _V |
|
| funsndifnop.b | |- B e. _V |
||
| funsndifnop.g | |- G = { <. A , B >. } |
||
| Assertion | funsndifnop | |- ( A =/= B -> -. G e. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsndifnop.a | |- A e. _V |
|
| 2 | funsndifnop.b | |- B e. _V |
|
| 3 | funsndifnop.g | |- G = { <. A , B >. } |
|
| 4 | elvv | |- ( G e. ( _V X. _V ) <-> E. x E. y G = <. x , y >. ) |
|
| 5 | 1 2 | funsn | |- Fun { <. A , B >. } |
| 6 | funeq | |- ( G = { <. A , B >. } -> ( Fun G <-> Fun { <. A , B >. } ) ) |
|
| 7 | 5 6 | mpbiri | |- ( G = { <. A , B >. } -> Fun G ) |
| 8 | 3 7 | ax-mp | |- Fun G |
| 9 | funeq | |- ( G = <. x , y >. -> ( Fun G <-> Fun <. x , y >. ) ) |
|
| 10 | vex | |- x e. _V |
|
| 11 | vex | |- y e. _V |
|
| 12 | 10 11 | funop | |- ( Fun <. x , y >. <-> E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) ) |
| 13 | 9 12 | bitrdi | |- ( G = <. x , y >. -> ( Fun G <-> E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) ) ) |
| 14 | eqeq2 | |- ( <. x , y >. = { <. a , a >. } -> ( G = <. x , y >. <-> G = { <. a , a >. } ) ) |
|
| 15 | eqeq1 | |- ( G = { <. A , B >. } -> ( G = { <. a , a >. } <-> { <. A , B >. } = { <. a , a >. } ) ) |
|
| 16 | opex | |- <. A , B >. e. _V |
|
| 17 | 16 | sneqr | |- ( { <. A , B >. } = { <. a , a >. } -> <. A , B >. = <. a , a >. ) |
| 18 | 1 2 | opth | |- ( <. A , B >. = <. a , a >. <-> ( A = a /\ B = a ) ) |
| 19 | eqtr3 | |- ( ( A = a /\ B = a ) -> A = B ) |
|
| 20 | 19 | a1d | |- ( ( A = a /\ B = a ) -> ( x = { a } -> A = B ) ) |
| 21 | 18 20 | sylbi | |- ( <. A , B >. = <. a , a >. -> ( x = { a } -> A = B ) ) |
| 22 | 17 21 | syl | |- ( { <. A , B >. } = { <. a , a >. } -> ( x = { a } -> A = B ) ) |
| 23 | 15 22 | biimtrdi | |- ( G = { <. A , B >. } -> ( G = { <. a , a >. } -> ( x = { a } -> A = B ) ) ) |
| 24 | 3 23 | ax-mp | |- ( G = { <. a , a >. } -> ( x = { a } -> A = B ) ) |
| 25 | 14 24 | biimtrdi | |- ( <. x , y >. = { <. a , a >. } -> ( G = <. x , y >. -> ( x = { a } -> A = B ) ) ) |
| 26 | 25 | com23 | |- ( <. x , y >. = { <. a , a >. } -> ( x = { a } -> ( G = <. x , y >. -> A = B ) ) ) |
| 27 | 26 | impcom | |- ( ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> ( G = <. x , y >. -> A = B ) ) |
| 28 | 27 | exlimiv | |- ( E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> ( G = <. x , y >. -> A = B ) ) |
| 29 | 28 | com12 | |- ( G = <. x , y >. -> ( E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> A = B ) ) |
| 30 | 13 29 | sylbid | |- ( G = <. x , y >. -> ( Fun G -> A = B ) ) |
| 31 | 8 30 | mpi | |- ( G = <. x , y >. -> A = B ) |
| 32 | 31 | exlimivv | |- ( E. x E. y G = <. x , y >. -> A = B ) |
| 33 | 4 32 | sylbi | |- ( G e. ( _V X. _V ) -> A = B ) |
| 34 | 33 | necon3ai | |- ( A =/= B -> -. G e. ( _V X. _V ) ) |