This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmdifi | |- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( C e. ( dom A \ dom B ) <-> ( C e. dom A /\ -. C e. dom B ) ) |
|
| 2 | releldm2 | |- ( Rel A -> ( C e. dom A <-> E. x e. A ( 1st ` x ) = C ) ) |
|
| 3 | 2 | adantr | |- ( ( Rel A /\ B C_ A ) -> ( C e. dom A <-> E. x e. A ( 1st ` x ) = C ) ) |
| 4 | 3 | anbi1d | |- ( ( Rel A /\ B C_ A ) -> ( ( C e. dom A /\ -. C e. dom B ) <-> ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) ) |
| 5 | 1 4 | bitrid | |- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) <-> ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) ) |
| 6 | simprl | |- ( ( ( Rel A /\ B C_ A ) /\ ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) -> E. x e. A ( 1st ` x ) = C ) |
|
| 7 | relss | |- ( B C_ A -> ( Rel A -> Rel B ) ) |
|
| 8 | 7 | impcom | |- ( ( Rel A /\ B C_ A ) -> Rel B ) |
| 9 | 1stdm | |- ( ( Rel B /\ x e. B ) -> ( 1st ` x ) e. dom B ) |
|
| 10 | 8 9 | sylan | |- ( ( ( Rel A /\ B C_ A ) /\ x e. B ) -> ( 1st ` x ) e. dom B ) |
| 11 | eleq1 | |- ( ( 1st ` x ) = C -> ( ( 1st ` x ) e. dom B <-> C e. dom B ) ) |
|
| 12 | 10 11 | syl5ibcom | |- ( ( ( Rel A /\ B C_ A ) /\ x e. B ) -> ( ( 1st ` x ) = C -> C e. dom B ) ) |
| 13 | 12 | rexlimdva | |- ( ( Rel A /\ B C_ A ) -> ( E. x e. B ( 1st ` x ) = C -> C e. dom B ) ) |
| 14 | 13 | con3d | |- ( ( Rel A /\ B C_ A ) -> ( -. C e. dom B -> -. E. x e. B ( 1st ` x ) = C ) ) |
| 15 | ralnex | |- ( A. x e. B -. ( 1st ` x ) = C <-> -. E. x e. B ( 1st ` x ) = C ) |
|
| 16 | 14 15 | imbitrrdi | |- ( ( Rel A /\ B C_ A ) -> ( -. C e. dom B -> A. x e. B -. ( 1st ` x ) = C ) ) |
| 17 | 16 | adantld | |- ( ( Rel A /\ B C_ A ) -> ( ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) -> A. x e. B -. ( 1st ` x ) = C ) ) |
| 18 | 17 | imp | |- ( ( ( Rel A /\ B C_ A ) /\ ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) -> A. x e. B -. ( 1st ` x ) = C ) |
| 19 | rexdifi | |- ( ( E. x e. A ( 1st ` x ) = C /\ A. x e. B -. ( 1st ` x ) = C ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) |
|
| 20 | 6 18 19 | syl2anc | |- ( ( ( Rel A /\ B C_ A ) /\ ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) |
| 21 | 20 | ex | |- ( ( Rel A /\ B C_ A ) -> ( ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
| 22 | 5 21 | sylbid | |- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |