This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb ). (Contributed by NM, 28-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elreldm | |- ( ( Rel A /\ B e. A ) -> |^| |^| B e. dom A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 2 | ssel | |- ( A C_ ( _V X. _V ) -> ( B e. A -> B e. ( _V X. _V ) ) ) |
|
| 3 | 1 2 | sylbi | |- ( Rel A -> ( B e. A -> B e. ( _V X. _V ) ) ) |
| 4 | elvv | |- ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. ) |
|
| 5 | 3 4 | imbitrdi | |- ( Rel A -> ( B e. A -> E. x E. y B = <. x , y >. ) ) |
| 6 | eleq1 | |- ( B = <. x , y >. -> ( B e. A <-> <. x , y >. e. A ) ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | opeldm | |- ( <. x , y >. e. A -> x e. dom A ) |
| 10 | 6 9 | biimtrdi | |- ( B = <. x , y >. -> ( B e. A -> x e. dom A ) ) |
| 11 | inteq | |- ( B = <. x , y >. -> |^| B = |^| <. x , y >. ) |
|
| 12 | 11 | inteqd | |- ( B = <. x , y >. -> |^| |^| B = |^| |^| <. x , y >. ) |
| 13 | 7 8 | op1stb | |- |^| |^| <. x , y >. = x |
| 14 | 12 13 | eqtrdi | |- ( B = <. x , y >. -> |^| |^| B = x ) |
| 15 | 14 | eleq1d | |- ( B = <. x , y >. -> ( |^| |^| B e. dom A <-> x e. dom A ) ) |
| 16 | 10 15 | sylibrd | |- ( B = <. x , y >. -> ( B e. A -> |^| |^| B e. dom A ) ) |
| 17 | 16 | exlimivv | |- ( E. x E. y B = <. x , y >. -> ( B e. A -> |^| |^| B e. dom A ) ) |
| 18 | 5 17 | syli | |- ( Rel A -> ( B e. A -> |^| |^| B e. dom A ) ) |
| 19 | 18 | imp | |- ( ( Rel A /\ B e. A ) -> |^| |^| B e. dom A ) |