This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem funcnvcnv

Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004)

Ref Expression
Assertion funcnvcnv Fun A Fun A -1 -1

Proof

Step Hyp Ref Expression
1 cnvcnvss A -1 -1 A
2 funss A -1 -1 A Fun A Fun A -1 -1
3 1 2 ax-mp Fun A Fun A -1 -1