This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tz6.12-1

Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by SN, 23-Dec-2024)

Ref Expression
Assertion tz6.12-1
|- ( ( A F y /\ E! y A F y ) -> ( F ` A ) = y )

Proof

Step Hyp Ref Expression
1 tz6.12c
 |-  ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) )
2 1 biimparc
 |-  ( ( A F y /\ E! y A F y ) -> ( F ` A ) = y )