This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foun | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 2 | fofn | |- ( G : C -onto-> D -> G Fn C ) |
|
| 3 | 1 2 | anim12i | |- ( ( F : A -onto-> B /\ G : C -onto-> D ) -> ( F Fn A /\ G Fn C ) ) |
| 4 | fnun | |- ( ( ( F Fn A /\ G Fn C ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) |
|
| 5 | 3 4 | sylan | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) |
| 6 | rnun | |- ran ( F u. G ) = ( ran F u. ran G ) |
|
| 7 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran F = B ) |
| 9 | forn | |- ( G : C -onto-> D -> ran G = D ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran G = D ) |
| 11 | 8 10 | uneq12d | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( ran F u. ran G ) = ( B u. D ) ) |
| 12 | 6 11 | eqtrid | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran ( F u. G ) = ( B u. D ) ) |
| 13 | df-fo | |- ( ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) <-> ( ( F u. G ) Fn ( A u. C ) /\ ran ( F u. G ) = ( B u. D ) ) ) |
|
| 14 | 5 12 13 | sylanbrc | |- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) ) |