This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnmptfvd.m | |- ( ph -> M Fn A ) |
|
| fnmptfvd.s | |- ( i = a -> D = C ) |
||
| fnmptfvd.d | |- ( ( ph /\ i e. A ) -> D e. U ) |
||
| fnmptfvd.c | |- ( ( ph /\ a e. A ) -> C e. V ) |
||
| Assertion | fnmptfvd | |- ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmptfvd.m | |- ( ph -> M Fn A ) |
|
| 2 | fnmptfvd.s | |- ( i = a -> D = C ) |
|
| 3 | fnmptfvd.d | |- ( ( ph /\ i e. A ) -> D e. U ) |
|
| 4 | fnmptfvd.c | |- ( ( ph /\ a e. A ) -> C e. V ) |
|
| 5 | 4 | ralrimiva | |- ( ph -> A. a e. A C e. V ) |
| 6 | eqid | |- ( a e. A |-> C ) = ( a e. A |-> C ) |
|
| 7 | 6 | fnmpt | |- ( A. a e. A C e. V -> ( a e. A |-> C ) Fn A ) |
| 8 | 5 7 | syl | |- ( ph -> ( a e. A |-> C ) Fn A ) |
| 9 | eqfnfv | |- ( ( M Fn A /\ ( a e. A |-> C ) Fn A ) -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) ) ) |
|
| 10 | 1 8 9 | syl2anc | |- ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) ) ) |
| 11 | 2 | cbvmptv | |- ( i e. A |-> D ) = ( a e. A |-> C ) |
| 12 | 11 | eqcomi | |- ( a e. A |-> C ) = ( i e. A |-> D ) |
| 13 | 12 | a1i | |- ( ph -> ( a e. A |-> C ) = ( i e. A |-> D ) ) |
| 14 | 13 | fveq1d | |- ( ph -> ( ( a e. A |-> C ) ` i ) = ( ( i e. A |-> D ) ` i ) ) |
| 15 | 14 | eqeq2d | |- ( ph -> ( ( M ` i ) = ( ( a e. A |-> C ) ` i ) <-> ( M ` i ) = ( ( i e. A |-> D ) ` i ) ) ) |
| 16 | 15 | ralbidv | |- ( ph -> ( A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) <-> A. i e. A ( M ` i ) = ( ( i e. A |-> D ) ` i ) ) ) |
| 17 | simpr | |- ( ( ph /\ i e. A ) -> i e. A ) |
|
| 18 | eqid | |- ( i e. A |-> D ) = ( i e. A |-> D ) |
|
| 19 | 18 | fvmpt2 | |- ( ( i e. A /\ D e. U ) -> ( ( i e. A |-> D ) ` i ) = D ) |
| 20 | 17 3 19 | syl2anc | |- ( ( ph /\ i e. A ) -> ( ( i e. A |-> D ) ` i ) = D ) |
| 21 | 20 | eqeq2d | |- ( ( ph /\ i e. A ) -> ( ( M ` i ) = ( ( i e. A |-> D ) ` i ) <-> ( M ` i ) = D ) ) |
| 22 | 21 | ralbidva | |- ( ph -> ( A. i e. A ( M ` i ) = ( ( i e. A |-> D ) ` i ) <-> A. i e. A ( M ` i ) = D ) ) |
| 23 | 10 16 22 | 3bitrd | |- ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = D ) ) |