This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnmptfvd.m | ⊢ ( 𝜑 → 𝑀 Fn 𝐴 ) | |
| fnmptfvd.s | ⊢ ( 𝑖 = 𝑎 → 𝐷 = 𝐶 ) | ||
| fnmptfvd.d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝐷 ∈ 𝑈 ) | ||
| fnmptfvd.c | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| Assertion | fnmptfvd | ⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmptfvd.m | ⊢ ( 𝜑 → 𝑀 Fn 𝐴 ) | |
| 2 | fnmptfvd.s | ⊢ ( 𝑖 = 𝑎 → 𝐷 = 𝐶 ) | |
| 3 | fnmptfvd.d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝐷 ∈ 𝑈 ) | |
| 4 | fnmptfvd.c | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 5 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 ) |
| 6 | eqid | ⊢ ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) | |
| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 9 | eqfnfv | ⊢ ( ( 𝑀 Fn 𝐴 ∧ ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ) ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ) ) |
| 11 | 2 | cbvmptv | ⊢ ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) |
| 12 | 11 | eqcomi | ⊢ ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ) |
| 14 | 13 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ↔ ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ) ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑖 ∈ 𝐴 ) | |
| 18 | eqid | ⊢ ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) | |
| 19 | 18 | fvmpt2 | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈 ) → ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) = 𝐷 ) |
| 20 | 17 3 19 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) = 𝐷 ) |
| 21 | 20 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ↔ ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |
| 22 | 21 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = ( ( 𝑖 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |
| 23 | 10 16 22 | 3bitrd | ⊢ ( 𝜑 → ( 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) = 𝐷 ) ) |