This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of fimadmfo , based on fores . A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimadmfoALT | |- ( F : A --> B -> F : A -onto-> ( F " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 2 | frel | |- ( F : A --> B -> Rel F ) |
|
| 3 | resdm | |- ( Rel F -> ( F |` dom F ) = F ) |
|
| 4 | 3 | eqcomd | |- ( Rel F -> F = ( F |` dom F ) ) |
| 5 | 2 4 | syl | |- ( F : A --> B -> F = ( F |` dom F ) ) |
| 6 | reseq2 | |- ( dom F = A -> ( F |` dom F ) = ( F |` A ) ) |
|
| 7 | 5 6 | sylan9eq | |- ( ( F : A --> B /\ dom F = A ) -> F = ( F |` A ) ) |
| 8 | 1 7 | mpdan | |- ( F : A --> B -> F = ( F |` A ) ) |
| 9 | ffun | |- ( F : A --> B -> Fun F ) |
|
| 10 | eqimss2 | |- ( dom F = A -> A C_ dom F ) |
|
| 11 | 1 10 | syl | |- ( F : A --> B -> A C_ dom F ) |
| 12 | 9 11 | jca | |- ( F : A --> B -> ( Fun F /\ A C_ dom F ) ) |
| 13 | 12 | adantr | |- ( ( F : A --> B /\ F = ( F |` A ) ) -> ( Fun F /\ A C_ dom F ) ) |
| 14 | fores | |- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
|
| 15 | 13 14 | syl | |- ( ( F : A --> B /\ F = ( F |` A ) ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
| 16 | foeq1 | |- ( F = ( F |` A ) -> ( F : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> ( F " A ) ) ) |
|
| 17 | 16 | adantl | |- ( ( F : A --> B /\ F = ( F |` A ) ) -> ( F : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> ( F " A ) ) ) |
| 18 | 15 17 | mpbird | |- ( ( F : A --> B /\ F = ( F |` A ) ) -> F : A -onto-> ( F " A ) ) |
| 19 | 8 18 | mpdan | |- ( F : A --> B -> F : A -onto-> ( F " A ) ) |