This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimadmfo | |- ( F : A --> B -> F : A -onto-> ( F " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 2 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 3 | 2 | adantr | |- ( ( F : A --> B /\ dom F = A ) -> F Fn A ) |
| 4 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 5 | 3 4 | sylib | |- ( ( F : A --> B /\ dom F = A ) -> F : A -onto-> ran F ) |
| 6 | imaeq2 | |- ( A = dom F -> ( F " A ) = ( F " dom F ) ) |
|
| 7 | imadmrn | |- ( F " dom F ) = ran F |
|
| 8 | 6 7 | eqtrdi | |- ( A = dom F -> ( F " A ) = ran F ) |
| 9 | 8 | eqcoms | |- ( dom F = A -> ( F " A ) = ran F ) |
| 10 | 9 | adantl | |- ( ( F : A --> B /\ dom F = A ) -> ( F " A ) = ran F ) |
| 11 | foeq3 | |- ( ( F " A ) = ran F -> ( F : A -onto-> ( F " A ) <-> F : A -onto-> ran F ) ) |
|
| 12 | 10 11 | syl | |- ( ( F : A --> B /\ dom F = A ) -> ( F : A -onto-> ( F " A ) <-> F : A -onto-> ran F ) ) |
| 13 | 5 12 | mpbird | |- ( ( F : A --> B /\ dom F = A ) -> F : A -onto-> ( F " A ) ) |
| 14 | 1 13 | mpdan | |- ( F : A --> B -> F : A -onto-> ( F " A ) ) |