This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fidomdm | |- ( F e. Fin -> dom F ~<_ F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv | |- dom ( F |` _V ) = dom F |
|
| 2 | finresfin | |- ( F e. Fin -> ( F |` _V ) e. Fin ) |
|
| 3 | fvex | |- ( 1st ` x ) e. _V |
|
| 4 | eqid | |- ( x e. ( F |` _V ) |-> ( 1st ` x ) ) = ( x e. ( F |` _V ) |-> ( 1st ` x ) ) |
|
| 5 | 3 4 | fnmpti | |- ( x e. ( F |` _V ) |-> ( 1st ` x ) ) Fn ( F |` _V ) |
| 6 | dffn4 | |- ( ( x e. ( F |` _V ) |-> ( 1st ` x ) ) Fn ( F |` _V ) <-> ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) |
|
| 7 | 5 6 | mpbi | |- ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) |
| 8 | relres | |- Rel ( F |` _V ) |
|
| 9 | reldm | |- ( Rel ( F |` _V ) -> dom ( F |` _V ) = ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) |
|
| 10 | foeq3 | |- ( dom ( F |` _V ) = ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) -> ( ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) <-> ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) ) |
|
| 11 | 8 9 10 | mp2b | |- ( ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) <-> ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) |
| 12 | 7 11 | mpbir | |- ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) |
| 13 | fodomfi | |- ( ( ( F |` _V ) e. Fin /\ ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) ) -> dom ( F |` _V ) ~<_ ( F |` _V ) ) |
|
| 14 | 2 12 13 | sylancl | |- ( F e. Fin -> dom ( F |` _V ) ~<_ ( F |` _V ) ) |
| 15 | resss | |- ( F |` _V ) C_ F |
|
| 16 | ssdomg | |- ( F e. Fin -> ( ( F |` _V ) C_ F -> ( F |` _V ) ~<_ F ) ) |
|
| 17 | 15 16 | mpi | |- ( F e. Fin -> ( F |` _V ) ~<_ F ) |
| 18 | domtr | |- ( ( dom ( F |` _V ) ~<_ ( F |` _V ) /\ ( F |` _V ) ~<_ F ) -> dom ( F |` _V ) ~<_ F ) |
|
| 19 | 14 17 18 | syl2anc | |- ( F e. Fin -> dom ( F |` _V ) ~<_ F ) |
| 20 | 1 19 | eqbrtrrid | |- ( F e. Fin -> dom F ~<_ F ) |