This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcnvres | |- ( F : A --> B -> `' ( F |` A ) = ( `' F |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' ( F |` A ) |
|
| 2 | relres | |- Rel ( `' F |` B ) |
|
| 3 | opelf | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> ( x e. A /\ y e. B ) ) |
|
| 4 | 3 | simpld | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> x e. A ) |
| 5 | 4 | ex | |- ( F : A --> B -> ( <. x , y >. e. F -> x e. A ) ) |
| 6 | 5 | pm4.71rd | |- ( F : A --> B -> ( <. x , y >. e. F <-> ( x e. A /\ <. x , y >. e. F ) ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | vex | |- x e. _V |
|
| 9 | 7 8 | opelcnv | |- ( <. y , x >. e. `' ( F |` A ) <-> <. x , y >. e. ( F |` A ) ) |
| 10 | 7 | opelresi | |- ( <. x , y >. e. ( F |` A ) <-> ( x e. A /\ <. x , y >. e. F ) ) |
| 11 | 9 10 | bitri | |- ( <. y , x >. e. `' ( F |` A ) <-> ( x e. A /\ <. x , y >. e. F ) ) |
| 12 | 6 11 | bitr4di | |- ( F : A --> B -> ( <. x , y >. e. F <-> <. y , x >. e. `' ( F |` A ) ) ) |
| 13 | 3 | simprd | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> y e. B ) |
| 14 | 13 | ex | |- ( F : A --> B -> ( <. x , y >. e. F -> y e. B ) ) |
| 15 | 14 | pm4.71rd | |- ( F : A --> B -> ( <. x , y >. e. F <-> ( y e. B /\ <. x , y >. e. F ) ) ) |
| 16 | 8 | opelresi | |- ( <. y , x >. e. ( `' F |` B ) <-> ( y e. B /\ <. y , x >. e. `' F ) ) |
| 17 | 7 8 | opelcnv | |- ( <. y , x >. e. `' F <-> <. x , y >. e. F ) |
| 18 | 17 | anbi2i | |- ( ( y e. B /\ <. y , x >. e. `' F ) <-> ( y e. B /\ <. x , y >. e. F ) ) |
| 19 | 16 18 | bitri | |- ( <. y , x >. e. ( `' F |` B ) <-> ( y e. B /\ <. x , y >. e. F ) ) |
| 20 | 15 19 | bitr4di | |- ( F : A --> B -> ( <. x , y >. e. F <-> <. y , x >. e. ( `' F |` B ) ) ) |
| 21 | 12 20 | bitr3d | |- ( F : A --> B -> ( <. y , x >. e. `' ( F |` A ) <-> <. y , x >. e. ( `' F |` B ) ) ) |
| 22 | 1 2 21 | eqrelrdv | |- ( F : A --> B -> `' ( F |` A ) = ( `' F |` B ) ) |